ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg GIF version

Theorem zaddcllemneg 9221
Description: Lemma for zaddcl 9222. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllemneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 987 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
21recnd 7918 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
32negnegd 8191 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
43oveq2d 5852 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) = (𝑀 + 𝑁))
5 negeq 8082 . . . . . . . 8 (𝑥 = 1 → -𝑥 = -1)
65oveq2d 5852 . . . . . . 7 (𝑥 = 1 → (𝑀 + -𝑥) = (𝑀 + -1))
76eleq1d 2233 . . . . . 6 (𝑥 = 1 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -1) ∈ ℤ))
87imbi2d 229 . . . . 5 (𝑥 = 1 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)))
9 negeq 8082 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
109oveq2d 5852 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 + -𝑥) = (𝑀 + -𝑦))
1110eleq1d 2233 . . . . . 6 (𝑥 = 𝑦 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -𝑦) ∈ ℤ))
1211imbi2d 229 . . . . 5 (𝑥 = 𝑦 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ)))
13 negeq 8082 . . . . . . . 8 (𝑥 = (𝑦 + 1) → -𝑥 = -(𝑦 + 1))
1413oveq2d 5852 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 + -𝑥) = (𝑀 + -(𝑦 + 1)))
1514eleq1d 2233 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -(𝑦 + 1)) ∈ ℤ))
1615imbi2d 229 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
17 negeq 8082 . . . . . . . 8 (𝑥 = -𝑁 → -𝑥 = --𝑁)
1817oveq2d 5852 . . . . . . 7 (𝑥 = -𝑁 → (𝑀 + -𝑥) = (𝑀 + --𝑁))
1918eleq1d 2233 . . . . . 6 (𝑥 = -𝑁 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + --𝑁) ∈ ℤ))
2019imbi2d 229 . . . . 5 (𝑥 = -𝑁 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ)))
21 zcn 9187 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2221adantr 274 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℂ)
23 1cnd 7906 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℂ)
2422, 23negsubd 8206 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) = (𝑀 − 1))
25 peano2zm 9220 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2625adantr 274 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 − 1) ∈ ℤ)
2724, 26eqeltrd 2241 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)
28 nncn 8856 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 480 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑦 ∈ ℂ)
30 1cnd 7906 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 1 ∈ ℂ)
3129, 30negdi2d 8214 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -(𝑦 + 1) = (-𝑦 − 1))
3231oveq2d 5852 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) = (𝑀 + (-𝑦 − 1)))
3322ad2antlr 481 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑀 ∈ ℂ)
3429negcld 8187 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -𝑦 ∈ ℂ)
3533, 34, 30addsubassd 8220 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) = (𝑀 + (-𝑦 − 1)))
36 peano2zm 9220 . . . . . . . . . 10 ((𝑀 + -𝑦) ∈ ℤ → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3736adantl 275 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3835, 37eqeltrrd 2242 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + (-𝑦 − 1)) ∈ ℤ)
3932, 38eqeltrd 2241 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)
4039exp31 362 . . . . . 6 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → ((𝑀 + -𝑦) ∈ ℤ → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
4140a2d 26 . . . . 5 (𝑦 ∈ ℕ → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
428, 12, 16, 20, 27, 41nnind 8864 . . . 4 (-𝑁 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ))
4342impcom 124 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
44433impa 1183 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
454, 44eqeltrrd 2242 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135  (class class class)co 5836  cc 7742  cr 7743  1c1 7745   + caddc 7747  cmin 8060  -cneg 8061  cn 8848  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by:  zaddcl  9222
  Copyright terms: Public domain W3C validator