ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg GIF version

Theorem zaddcllemneg 9411
Description: Lemma for zaddcl 9412. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllemneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1001 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
21recnd 8101 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
32negnegd 8374 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
43oveq2d 5960 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) = (𝑀 + 𝑁))
5 negeq 8265 . . . . . . . 8 (𝑥 = 1 → -𝑥 = -1)
65oveq2d 5960 . . . . . . 7 (𝑥 = 1 → (𝑀 + -𝑥) = (𝑀 + -1))
76eleq1d 2274 . . . . . 6 (𝑥 = 1 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -1) ∈ ℤ))
87imbi2d 230 . . . . 5 (𝑥 = 1 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)))
9 negeq 8265 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
109oveq2d 5960 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 + -𝑥) = (𝑀 + -𝑦))
1110eleq1d 2274 . . . . . 6 (𝑥 = 𝑦 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -𝑦) ∈ ℤ))
1211imbi2d 230 . . . . 5 (𝑥 = 𝑦 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ)))
13 negeq 8265 . . . . . . . 8 (𝑥 = (𝑦 + 1) → -𝑥 = -(𝑦 + 1))
1413oveq2d 5960 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 + -𝑥) = (𝑀 + -(𝑦 + 1)))
1514eleq1d 2274 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -(𝑦 + 1)) ∈ ℤ))
1615imbi2d 230 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
17 negeq 8265 . . . . . . . 8 (𝑥 = -𝑁 → -𝑥 = --𝑁)
1817oveq2d 5960 . . . . . . 7 (𝑥 = -𝑁 → (𝑀 + -𝑥) = (𝑀 + --𝑁))
1918eleq1d 2274 . . . . . 6 (𝑥 = -𝑁 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + --𝑁) ∈ ℤ))
2019imbi2d 230 . . . . 5 (𝑥 = -𝑁 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ)))
21 zcn 9377 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2221adantr 276 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℂ)
23 1cnd 8088 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℂ)
2422, 23negsubd 8389 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) = (𝑀 − 1))
25 peano2zm 9410 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2625adantr 276 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 − 1) ∈ ℤ)
2724, 26eqeltrd 2282 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)
28 nncn 9044 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 488 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑦 ∈ ℂ)
30 1cnd 8088 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 1 ∈ ℂ)
3129, 30negdi2d 8397 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -(𝑦 + 1) = (-𝑦 − 1))
3231oveq2d 5960 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) = (𝑀 + (-𝑦 − 1)))
3322ad2antlr 489 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑀 ∈ ℂ)
3429negcld 8370 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -𝑦 ∈ ℂ)
3533, 34, 30addsubassd 8403 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) = (𝑀 + (-𝑦 − 1)))
36 peano2zm 9410 . . . . . . . . . 10 ((𝑀 + -𝑦) ∈ ℤ → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3736adantl 277 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3835, 37eqeltrrd 2283 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + (-𝑦 − 1)) ∈ ℤ)
3932, 38eqeltrd 2282 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)
4039exp31 364 . . . . . 6 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → ((𝑀 + -𝑦) ∈ ℤ → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
4140a2d 26 . . . . 5 (𝑦 ∈ ℕ → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
428, 12, 16, 20, 27, 41nnind 9052 . . . 4 (-𝑁 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ))
4342impcom 125 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
44433impa 1197 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
454, 44eqeltrrd 2283 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  (class class class)co 5944  cc 7923  cr 7924  1c1 7926   + caddc 7928  cmin 8243  -cneg 8244  cn 9036  cz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by:  zaddcl  9412
  Copyright terms: Public domain W3C validator