ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg GIF version

Theorem zaddcllemneg 9230
Description: Lemma for zaddcl 9231. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllemneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 988 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
21recnd 7927 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
32negnegd 8200 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
43oveq2d 5858 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) = (𝑀 + 𝑁))
5 negeq 8091 . . . . . . . 8 (𝑥 = 1 → -𝑥 = -1)
65oveq2d 5858 . . . . . . 7 (𝑥 = 1 → (𝑀 + -𝑥) = (𝑀 + -1))
76eleq1d 2235 . . . . . 6 (𝑥 = 1 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -1) ∈ ℤ))
87imbi2d 229 . . . . 5 (𝑥 = 1 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)))
9 negeq 8091 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
109oveq2d 5858 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 + -𝑥) = (𝑀 + -𝑦))
1110eleq1d 2235 . . . . . 6 (𝑥 = 𝑦 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -𝑦) ∈ ℤ))
1211imbi2d 229 . . . . 5 (𝑥 = 𝑦 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ)))
13 negeq 8091 . . . . . . . 8 (𝑥 = (𝑦 + 1) → -𝑥 = -(𝑦 + 1))
1413oveq2d 5858 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 + -𝑥) = (𝑀 + -(𝑦 + 1)))
1514eleq1d 2235 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -(𝑦 + 1)) ∈ ℤ))
1615imbi2d 229 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
17 negeq 8091 . . . . . . . 8 (𝑥 = -𝑁 → -𝑥 = --𝑁)
1817oveq2d 5858 . . . . . . 7 (𝑥 = -𝑁 → (𝑀 + -𝑥) = (𝑀 + --𝑁))
1918eleq1d 2235 . . . . . 6 (𝑥 = -𝑁 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + --𝑁) ∈ ℤ))
2019imbi2d 229 . . . . 5 (𝑥 = -𝑁 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ)))
21 zcn 9196 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2221adantr 274 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℂ)
23 1cnd 7915 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℂ)
2422, 23negsubd 8215 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) = (𝑀 − 1))
25 peano2zm 9229 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2625adantr 274 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 − 1) ∈ ℤ)
2724, 26eqeltrd 2243 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)
28 nncn 8865 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 480 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑦 ∈ ℂ)
30 1cnd 7915 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 1 ∈ ℂ)
3129, 30negdi2d 8223 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -(𝑦 + 1) = (-𝑦 − 1))
3231oveq2d 5858 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) = (𝑀 + (-𝑦 − 1)))
3322ad2antlr 481 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑀 ∈ ℂ)
3429negcld 8196 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -𝑦 ∈ ℂ)
3533, 34, 30addsubassd 8229 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) = (𝑀 + (-𝑦 − 1)))
36 peano2zm 9229 . . . . . . . . . 10 ((𝑀 + -𝑦) ∈ ℤ → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3736adantl 275 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3835, 37eqeltrrd 2244 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + (-𝑦 − 1)) ∈ ℤ)
3932, 38eqeltrd 2243 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)
4039exp31 362 . . . . . 6 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → ((𝑀 + -𝑦) ∈ ℤ → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
4140a2d 26 . . . . 5 (𝑦 ∈ ℕ → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
428, 12, 16, 20, 27, 41nnind 8873 . . . 4 (-𝑁 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ))
4342impcom 124 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
44433impa 1184 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
454, 44eqeltrrd 2244 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751  cr 7752  1c1 7754   + caddc 7756  cmin 8069  -cneg 8070  cn 8857  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  zaddcl  9231
  Copyright terms: Public domain W3C validator