ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg GIF version

Theorem zaddcllemneg 8685
Description: Lemma for zaddcl 8686. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllemneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 940 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
21recnd 7419 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
32negnegd 7687 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
43oveq2d 5607 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) = (𝑀 + 𝑁))
5 negeq 7578 . . . . . . . 8 (𝑥 = 1 → -𝑥 = -1)
65oveq2d 5607 . . . . . . 7 (𝑥 = 1 → (𝑀 + -𝑥) = (𝑀 + -1))
76eleq1d 2151 . . . . . 6 (𝑥 = 1 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -1) ∈ ℤ))
87imbi2d 228 . . . . 5 (𝑥 = 1 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)))
9 negeq 7578 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
109oveq2d 5607 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 + -𝑥) = (𝑀 + -𝑦))
1110eleq1d 2151 . . . . . 6 (𝑥 = 𝑦 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -𝑦) ∈ ℤ))
1211imbi2d 228 . . . . 5 (𝑥 = 𝑦 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ)))
13 negeq 7578 . . . . . . . 8 (𝑥 = (𝑦 + 1) → -𝑥 = -(𝑦 + 1))
1413oveq2d 5607 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 + -𝑥) = (𝑀 + -(𝑦 + 1)))
1514eleq1d 2151 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -(𝑦 + 1)) ∈ ℤ))
1615imbi2d 228 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
17 negeq 7578 . . . . . . . 8 (𝑥 = -𝑁 → -𝑥 = --𝑁)
1817oveq2d 5607 . . . . . . 7 (𝑥 = -𝑁 → (𝑀 + -𝑥) = (𝑀 + --𝑁))
1918eleq1d 2151 . . . . . 6 (𝑥 = -𝑁 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + --𝑁) ∈ ℤ))
2019imbi2d 228 . . . . 5 (𝑥 = -𝑁 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ)))
21 zcn 8651 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2221adantr 270 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℂ)
23 1cnd 7407 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℂ)
2422, 23negsubd 7702 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) = (𝑀 − 1))
25 peano2zm 8684 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2625adantr 270 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 − 1) ∈ ℤ)
2724, 26eqeltrd 2159 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)
28 nncn 8324 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 472 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑦 ∈ ℂ)
30 1cnd 7407 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 1 ∈ ℂ)
3129, 30negdi2d 7710 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -(𝑦 + 1) = (-𝑦 − 1))
3231oveq2d 5607 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) = (𝑀 + (-𝑦 − 1)))
3322ad2antlr 473 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑀 ∈ ℂ)
3429negcld 7683 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -𝑦 ∈ ℂ)
3533, 34, 30addsubassd 7716 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) = (𝑀 + (-𝑦 − 1)))
36 peano2zm 8684 . . . . . . . . . 10 ((𝑀 + -𝑦) ∈ ℤ → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3736adantl 271 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3835, 37eqeltrrd 2160 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + (-𝑦 − 1)) ∈ ℤ)
3932, 38eqeltrd 2159 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)
4039exp31 356 . . . . . 6 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → ((𝑀 + -𝑦) ∈ ℤ → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
4140a2d 26 . . . . 5 (𝑦 ∈ ℕ → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
428, 12, 16, 20, 27, 41nnind 8332 . . . 4 (-𝑁 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ))
4342impcom 123 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
44433impa 1134 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
454, 44eqeltrrd 2160 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  (class class class)co 5591  cc 7251  cr 7252  1c1 7254   + caddc 7256  cmin 7556  -cneg 7557  cn 8316  cz 8646
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647
This theorem is referenced by:  zaddcl  8686
  Copyright terms: Public domain W3C validator