ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg GIF version

Theorem zaddcllemneg 9292
Description: Lemma for zaddcl 9293. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllemneg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 998 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
21recnd 7986 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
32negnegd 8259 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → --𝑁 = 𝑁)
43oveq2d 5891 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) = (𝑀 + 𝑁))
5 negeq 8150 . . . . . . . 8 (𝑥 = 1 → -𝑥 = -1)
65oveq2d 5891 . . . . . . 7 (𝑥 = 1 → (𝑀 + -𝑥) = (𝑀 + -1))
76eleq1d 2246 . . . . . 6 (𝑥 = 1 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -1) ∈ ℤ))
87imbi2d 230 . . . . 5 (𝑥 = 1 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)))
9 negeq 8150 . . . . . . . 8 (𝑥 = 𝑦 → -𝑥 = -𝑦)
109oveq2d 5891 . . . . . . 7 (𝑥 = 𝑦 → (𝑀 + -𝑥) = (𝑀 + -𝑦))
1110eleq1d 2246 . . . . . 6 (𝑥 = 𝑦 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -𝑦) ∈ ℤ))
1211imbi2d 230 . . . . 5 (𝑥 = 𝑦 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ)))
13 negeq 8150 . . . . . . . 8 (𝑥 = (𝑦 + 1) → -𝑥 = -(𝑦 + 1))
1413oveq2d 5891 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑀 + -𝑥) = (𝑀 + -(𝑦 + 1)))
1514eleq1d 2246 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + -(𝑦 + 1)) ∈ ℤ))
1615imbi2d 230 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
17 negeq 8150 . . . . . . . 8 (𝑥 = -𝑁 → -𝑥 = --𝑁)
1817oveq2d 5891 . . . . . . 7 (𝑥 = -𝑁 → (𝑀 + -𝑥) = (𝑀 + --𝑁))
1918eleq1d 2246 . . . . . 6 (𝑥 = -𝑁 → ((𝑀 + -𝑥) ∈ ℤ ↔ (𝑀 + --𝑁) ∈ ℤ))
2019imbi2d 230 . . . . 5 (𝑥 = -𝑁 → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑥) ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ)))
21 zcn 9258 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2221adantr 276 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 𝑀 ∈ ℂ)
23 1cnd 7973 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℂ)
2422, 23negsubd 8274 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) = (𝑀 − 1))
25 peano2zm 9291 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
2625adantr 276 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 − 1) ∈ ℤ)
2724, 26eqeltrd 2254 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -1) ∈ ℤ)
28 nncn 8927 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2928ad2antrr 488 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑦 ∈ ℂ)
30 1cnd 7973 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 1 ∈ ℂ)
3129, 30negdi2d 8282 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -(𝑦 + 1) = (-𝑦 − 1))
3231oveq2d 5891 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) = (𝑀 + (-𝑦 − 1)))
3322ad2antlr 489 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → 𝑀 ∈ ℂ)
3429negcld 8255 . . . . . . . . . 10 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → -𝑦 ∈ ℂ)
3533, 34, 30addsubassd 8288 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) = (𝑀 + (-𝑦 − 1)))
36 peano2zm 9291 . . . . . . . . . 10 ((𝑀 + -𝑦) ∈ ℤ → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3736adantl 277 . . . . . . . . 9 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 + -𝑦) − 1) ∈ ℤ)
3835, 37eqeltrrd 2255 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + (-𝑦 − 1)) ∈ ℤ)
3932, 38eqeltrd 2254 . . . . . . 7 (((𝑦 ∈ ℕ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ)) ∧ (𝑀 + -𝑦) ∈ ℤ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)
4039exp31 364 . . . . . 6 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → ((𝑀 + -𝑦) ∈ ℤ → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
4140a2d 26 . . . . 5 (𝑦 ∈ ℕ → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -𝑦) ∈ ℤ) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + -(𝑦 + 1)) ∈ ℤ)))
428, 12, 16, 20, 27, 41nnind 8935 . . . 4 (-𝑁 ∈ ℕ → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) → (𝑀 + --𝑁) ∈ ℤ))
4342impcom 125 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ) ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
44433impa 1194 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + --𝑁) ∈ ℤ)
454, 44eqeltrrd 2255 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  (class class class)co 5875  cc 7809  cr 7810  1c1 7812   + caddc 7814  cmin 8128  -cneg 8129  cn 8919  cz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  zaddcl  9293
  Copyright terms: Public domain W3C validator