ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 GIF version

Theorem expp1 9799
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))

Proof of Theorem expp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 8567 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 simpr 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
3 elnnuz 8950 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
42, 3sylib 120 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
5 simpll 496 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → 𝐴 ∈ ℂ)
6 elnnuz 8950 . . . . . . . . 9 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
7 fvconst2g 5451 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝐴})‘𝑥) = 𝐴)
87eleq1d 2151 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℕ) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
96, 8sylan2br 282 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ‘1)) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
109adantlr 461 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → (((ℕ × {𝐴})‘𝑥) ∈ ℂ ↔ 𝐴 ∈ ℂ))
115, 10mpbird 165 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℤ‘1)) → ((ℕ × {𝐴})‘𝑥) ∈ ℂ)
12 mulcl 7372 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1312adantl 271 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
144, 11, 13iseqp1 9757 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))))
15 peano2nn 8328 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
16 fvconst2g 5451 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
1715, 16sylan2 280 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((ℕ × {𝐴})‘(𝑁 + 1)) = 𝐴)
1817oveq2d 5607 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · ((ℕ × {𝐴})‘(𝑁 + 1))) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
1914, 18eqtrd 2115 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
20 expinnval 9795 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)))
2115, 20sylan2 280 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = (seq1( · , (ℕ × {𝐴}), ℂ)‘(𝑁 + 1)))
22 expinnval 9795 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁))
2322oveq1d 5606 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) · 𝐴) = ((seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁) · 𝐴))
2419, 21, 233eqtr4d 2125 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
25 exp1 9798 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
26 mulid2 7389 . . . . . 6 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
2725, 26eqtr4d 2118 . . . . 5 (𝐴 ∈ ℂ → (𝐴↑1) = (1 · 𝐴))
2827adantr 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑1) = (1 · 𝐴))
29 simpr 108 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → 𝑁 = 0)
3029oveq1d 5606 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = (0 + 1))
31 0p1e1 8430 . . . . . 6 (0 + 1) = 1
3230, 31syl6eq 2131 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝑁 + 1) = 1)
3332oveq2d 5607 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = (𝐴↑1))
34 oveq2 5599 . . . . . 6 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
35 exp0 9796 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3634, 35sylan9eqr 2137 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴𝑁) = 1)
3736oveq1d 5606 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → ((𝐴𝑁) · 𝐴) = (1 · 𝐴))
3828, 33, 373eqtr4d 2125 . . 3 ((𝐴 ∈ ℂ ∧ 𝑁 = 0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
3924, 38jaodan 744 . 2 ((𝐴 ∈ ℂ ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
401, 39sylan2b 281 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑁 + 1)) = ((𝐴𝑁) · 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wcel 1434  {csn 3422   × cxp 4399  cfv 4969  (class class class)co 5591  cc 7251  0cc0 7253  1c1 7254   + caddc 7256   · cmul 7258  cn 8316  0cn0 8565  cuz 8914  seqcseq 9740  cexp 9791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915  df-iseq 9741  df-iexp 9792
This theorem is referenced by:  expcllem  9803  expm1t  9820  expap0  9822  mulexp  9831  expadd  9834  expmul  9837  leexp2r  9846  leexp1a  9847  sqval  9850  cu2  9889  i3  9892  binom3  9906  bernneq  9909  expp1d  9922  faclbnd  9984  faclbnd2  9985  faclbnd6  9987  cjexp  10154  absexp  10339  prmdvdsexp  10907  oddpwdclemodd  10930
  Copyright terms: Public domain W3C validator