ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expp1 GIF version

Theorem expp1 10541
Description: Value of a complex number raised to a nonnegative integer power plus one. Part of Definition 10-4.1 of [Gleason] p. 134. (Contributed by NM, 20-May-2005.) (Revised by Mario Carneiro, 2-Jul-2013.)
Assertion
Ref Expression
expp1 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘ + 1)) = ((๐ดโ†‘๐‘) ยท ๐ด))

Proof of Theorem expp1
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9192 . 2 (๐‘ โˆˆ โ„•0 โ†” (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
2 simpr 110 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ โ„•)
3 elnnuz 9578 . . . . . . 7 (๐‘ โˆˆ โ„• โ†” ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1))
42, 3sylib 122 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1))
5 simpll 527 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โˆง ๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜1)) โ†’ ๐ด โˆˆ โ„‚)
6 elnnuz 9578 . . . . . . . . 9 (๐‘ฅ โˆˆ โ„• โ†” ๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜1))
7 fvconst2g 5743 . . . . . . . . . 10 ((๐ด โˆˆ โ„‚ โˆง ๐‘ฅ โˆˆ โ„•) โ†’ ((โ„• ร— {๐ด})โ€˜๐‘ฅ) = ๐ด)
87eleq1d 2256 . . . . . . . . 9 ((๐ด โˆˆ โ„‚ โˆง ๐‘ฅ โˆˆ โ„•) โ†’ (((โ„• ร— {๐ด})โ€˜๐‘ฅ) โˆˆ โ„‚ โ†” ๐ด โˆˆ โ„‚))
96, 8sylan2br 288 . . . . . . . 8 ((๐ด โˆˆ โ„‚ โˆง ๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜1)) โ†’ (((โ„• ร— {๐ด})โ€˜๐‘ฅ) โˆˆ โ„‚ โ†” ๐ด โˆˆ โ„‚))
109adantlr 477 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โˆง ๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜1)) โ†’ (((โ„• ร— {๐ด})โ€˜๐‘ฅ) โˆˆ โ„‚ โ†” ๐ด โˆˆ โ„‚))
115, 10mpbird 167 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โˆง ๐‘ฅ โˆˆ (โ„คโ‰ฅโ€˜1)) โ†’ ((โ„• ร— {๐ด})โ€˜๐‘ฅ) โˆˆ โ„‚)
12 mulcl 7952 . . . . . . 7 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‚) โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ โ„‚)
1312adantl 277 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โˆง (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‚)) โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ โ„‚)
144, 11, 13seq3p1 10476 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (seq1( ยท , (โ„• ร— {๐ด}))โ€˜(๐‘ + 1)) = ((seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘) ยท ((โ„• ร— {๐ด})โ€˜(๐‘ + 1))))
15 peano2nn 8945 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ (๐‘ + 1) โˆˆ โ„•)
16 fvconst2g 5743 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง (๐‘ + 1) โˆˆ โ„•) โ†’ ((โ„• ร— {๐ด})โ€˜(๐‘ + 1)) = ๐ด)
1715, 16sylan2 286 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ((โ„• ร— {๐ด})โ€˜(๐‘ + 1)) = ๐ด)
1817oveq2d 5904 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ((seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘) ยท ((โ„• ร— {๐ด})โ€˜(๐‘ + 1))) = ((seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘) ยท ๐ด))
1914, 18eqtrd 2220 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (seq1( ยท , (โ„• ร— {๐ด}))โ€˜(๐‘ + 1)) = ((seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘) ยท ๐ด))
20 expnnval 10537 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง (๐‘ + 1) โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘ + 1)) = (seq1( ยท , (โ„• ร— {๐ด}))โ€˜(๐‘ + 1)))
2115, 20sylan2 286 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘ + 1)) = (seq1( ยท , (โ„• ร— {๐ด}))โ€˜(๐‘ + 1)))
22 expnnval 10537 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘๐‘) = (seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘))
2322oveq1d 5903 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ ((๐ดโ†‘๐‘) ยท ๐ด) = ((seq1( ยท , (โ„• ร— {๐ด}))โ€˜๐‘) ยท ๐ด))
2419, 21, 233eqtr4d 2230 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘ + 1)) = ((๐ดโ†‘๐‘) ยท ๐ด))
25 exp1 10540 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘1) = ๐ด)
26 mullid 7969 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (1 ยท ๐ด) = ๐ด)
2725, 26eqtr4d 2223 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘1) = (1 ยท ๐ด))
2827adantr 276 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘1) = (1 ยท ๐ด))
29 simpr 110 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ ๐‘ = 0)
3029oveq1d 5903 . . . . . 6 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐‘ + 1) = (0 + 1))
31 0p1e1 9047 . . . . . 6 (0 + 1) = 1
3230, 31eqtrdi 2236 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐‘ + 1) = 1)
3332oveq2d 5904 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘(๐‘ + 1)) = (๐ดโ†‘1))
34 oveq2 5896 . . . . . 6 (๐‘ = 0 โ†’ (๐ดโ†‘๐‘) = (๐ดโ†‘0))
35 exp0 10538 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘0) = 1)
3634, 35sylan9eqr 2242 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘๐‘) = 1)
3736oveq1d 5903 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ ((๐ดโ†‘๐‘) ยท ๐ด) = (1 ยท ๐ด))
3828, 33, 373eqtr4d 2230 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐‘ = 0) โ†’ (๐ดโ†‘(๐‘ + 1)) = ((๐ดโ†‘๐‘) ยท ๐ด))
3924, 38jaodan 798 . 2 ((๐ด โˆˆ โ„‚ โˆง (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0)) โ†’ (๐ดโ†‘(๐‘ + 1)) = ((๐ดโ†‘๐‘) ยท ๐ด))
401, 39sylan2b 287 1 ((๐ด โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘ + 1)) = ((๐ดโ†‘๐‘) ยท ๐ด))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 709   = wceq 1363   โˆˆ wcel 2158  {csn 3604   ร— cxp 4636  โ€˜cfv 5228  (class class class)co 5888  โ„‚cc 7823  0cc0 7825  1c1 7826   + caddc 7828   ยท cmul 7830  โ„•cn 8933  โ„•0cn0 9190  โ„คโ‰ฅcuz 9542  seqcseq 10459  โ†‘cexp 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460  df-exp 10534
This theorem is referenced by:  expcllem  10545  expm1t  10562  expap0  10564  mulexp  10573  expadd  10576  expmul  10579  leexp2r  10588  leexp1a  10589  sqval  10592  cu2  10633  i3  10636  binom3  10652  bernneq  10655  modqexp  10661  expp1d  10669  faclbnd  10735  faclbnd2  10736  faclbnd6  10738  cjexp  10916  absexp  11102  binomlem  11505  geolim  11533  geo2sum  11536  efexp  11704  demoivreALT  11795  prmdvdsexp  12162  oddpwdclemodd  12186  pcexp  12323  cnfldexp  13753  expcncf  14388  dvexp  14471  tangtx  14555  binom4  14693
  Copyright terms: Public domain W3C validator