ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 GIF version

Theorem mulp1mod1 10460
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9615 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℂ)
3 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
43zcnd 9452 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℂ)
52, 4mulcomd 8051 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁))
65oveq1d 5938 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁))
7 eluzelz 9613 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
8 zq 9703 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
97, 8syl 14 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
109adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℚ)
11 0red 8030 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
12 2re 9063 . . . . . . . . 9 2 ∈ ℝ
1312a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ∈ ℝ)
147adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
1514zred 9451 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
16 2pos 9084 . . . . . . . . 9 0 < 2
1716a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 2)
18 eluzle 9616 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1918adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ≤ 𝑁)
2011, 13, 15, 17, 19ltletrd 8453 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑁)
21 mulqmod0 10425 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝐴 · 𝑁) mod 𝑁) = 0)
223, 10, 20, 21syl3anc 1249 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0)
236, 22eqtrd 2229 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0)
2423oveq1d 5938 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1))
25 0p1e1 9107 . . . 4 (0 + 1) = 1
2624, 25eqtrdi 2245 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1)
2726oveq1d 5938 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁))
28 zq 9703 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
293, 28syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℚ)
30 qmulcl 9714 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
3110, 29, 30syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) ∈ ℚ)
32 1z 9355 . . . 4 1 ∈ ℤ
33 zq 9703 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
3432, 33mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℚ)
35 modqaddmod 10458 . . 3 ((((𝑁 · 𝐴) ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
3631, 34, 10, 20, 35syl22anc 1250 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
37 eluz2gt1 9679 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
3837adantl 277 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑁)
39 q1mod 10451 . . 3 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4010, 38, 39syl2anc 411 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (1 mod 𝑁) = 1)
4127, 36, 403eqtr3d 2237 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5923  cc 7880  cr 7881  0cc0 7882  1c1 7883   + caddc 7885   · cmul 7887   < clt 8064  cle 8065  2c2 9044  cz 9329  cuz 9604  cq 9696   mod cmo 10417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-fl 10363  df-mod 10418
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator