ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 GIF version

Theorem mulp1mod1 10527
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9674 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℂ)
3 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
43zcnd 9511 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℂ)
52, 4mulcomd 8109 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁))
65oveq1d 5971 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁))
7 eluzelz 9672 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
8 zq 9762 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
97, 8syl 14 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
109adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℚ)
11 0red 8088 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
12 2re 9121 . . . . . . . . 9 2 ∈ ℝ
1312a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ∈ ℝ)
147adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
1514zred 9510 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
16 2pos 9142 . . . . . . . . 9 0 < 2
1716a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 2)
18 eluzle 9675 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1918adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ≤ 𝑁)
2011, 13, 15, 17, 19ltletrd 8511 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑁)
21 mulqmod0 10492 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝐴 · 𝑁) mod 𝑁) = 0)
223, 10, 20, 21syl3anc 1250 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0)
236, 22eqtrd 2239 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0)
2423oveq1d 5971 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1))
25 0p1e1 9165 . . . 4 (0 + 1) = 1
2624, 25eqtrdi 2255 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1)
2726oveq1d 5971 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁))
28 zq 9762 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
293, 28syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℚ)
30 qmulcl 9773 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
3110, 29, 30syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) ∈ ℚ)
32 1z 9413 . . . 4 1 ∈ ℤ
33 zq 9762 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
3432, 33mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℚ)
35 modqaddmod 10525 . . 3 ((((𝑁 · 𝐴) ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
3631, 34, 10, 20, 35syl22anc 1251 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
37 eluz2gt1 9738 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
3837adantl 277 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑁)
39 q1mod 10518 . . 3 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4010, 38, 39syl2anc 411 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (1 mod 𝑁) = 1)
4127, 36, 403eqtr3d 2247 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177   class class class wbr 4050  cfv 5279  (class class class)co 5956  cc 7938  cr 7939  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945   < clt 8122  cle 8123  2c2 9102  cz 9387  cuz 9663  cq 9755   mod cmo 10484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-po 4350  df-iso 4351  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-fl 10430  df-mod 10485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator