ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulp1mod1 GIF version

Theorem mulp1mod1 10574
Description: The product of an integer and an integer greater than 1 increased by 1 is 1 modulo the integer greater than 1. (Contributed by AV, 15-Jul-2021.)
Assertion
Ref Expression
mulp1mod1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)

Proof of Theorem mulp1mod1
StepHypRef Expression
1 eluzelcn 9721 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℂ)
3 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℤ)
43zcnd 9558 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℂ)
52, 4mulcomd 8156 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) = (𝐴 · 𝑁))
65oveq1d 6009 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = ((𝐴 · 𝑁) mod 𝑁))
7 eluzelz 9719 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
8 zq 9809 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
97, 8syl 14 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℚ)
109adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℚ)
11 0red 8135 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 ∈ ℝ)
12 2re 9168 . . . . . . . . 9 2 ∈ ℝ
1312a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ∈ ℝ)
147adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
1514zred 9557 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℝ)
16 2pos 9189 . . . . . . . . 9 0 < 2
1716a1i 9 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 2)
18 eluzle 9722 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
1918adantl 277 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 2 ≤ 𝑁)
2011, 13, 15, 17, 19ltletrd 8558 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 0 < 𝑁)
21 mulqmod0 10539 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝐴 · 𝑁) mod 𝑁) = 0)
223, 10, 20, 21syl3anc 1271 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴 · 𝑁) mod 𝑁) = 0)
236, 22eqtrd 2262 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 · 𝐴) mod 𝑁) = 0)
2423oveq1d 6009 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = (0 + 1))
25 0p1e1 9212 . . . 4 (0 + 1) = 1
2624, 25eqtrdi 2278 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) mod 𝑁) + 1) = 1)
2726oveq1d 6009 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (1 mod 𝑁))
28 zq 9809 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
293, 28syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐴 ∈ ℚ)
30 qmulcl 9820 . . . 4 ((𝑁 ∈ ℚ ∧ 𝐴 ∈ ℚ) → (𝑁 · 𝐴) ∈ ℚ)
3110, 29, 30syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 · 𝐴) ∈ ℚ)
32 1z 9460 . . . 4 1 ∈ ℤ
33 zq 9809 . . . 4 (1 ∈ ℤ → 1 ∈ ℚ)
3432, 33mp1i 10 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 ∈ ℚ)
35 modqaddmod 10572 . . 3 ((((𝑁 · 𝐴) ∈ ℚ ∧ 1 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
3631, 34, 10, 20, 35syl22anc 1272 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → ((((𝑁 · 𝐴) mod 𝑁) + 1) mod 𝑁) = (((𝑁 · 𝐴) + 1) mod 𝑁))
37 eluz2gt1 9785 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
3837adantl 277 . . 3 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → 1 < 𝑁)
39 q1mod 10565 . . 3 ((𝑁 ∈ ℚ ∧ 1 < 𝑁) → (1 mod 𝑁) = 1)
4010, 38, 39syl2anc 411 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (1 mod 𝑁) = 1)
4127, 36, 403eqtr3d 2270 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 · 𝐴) + 1) mod 𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4082  cfv 5314  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992   < clt 8169  cle 8170  2c2 9149  cz 9434  cuz 9710  cq 9802   mod cmo 10531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fl 10477  df-mod 10532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator