| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plendx | GIF version | ||
| Description: Index value of the df-ple 13138 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| plendx | ⊢ (le‘ndx) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ple 13138 | . 2 ⊢ le = Slot ;10 | |
| 2 | 10nn 9601 | . 2 ⊢ ;10 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 13063 | 1 ⊢ (le‘ndx) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ‘cfv 5318 0cc0 8007 1c1 8008 ;cdc 9586 ndxcnx 13037 lecple 13125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-1rid 8114 ax-0id 8115 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-dec 9587 df-ndx 13043 df-slot 13044 df-ple 13138 |
| This theorem is referenced by: plendxnn 13244 basendxltplendx 13245 plendxnplusgndx 13247 plendxnmulrndx 13248 plendxnscandx 13249 plendxnvscandx 13250 slotsdifplendx 13251 plendxnocndx 13255 slotsdifdsndx 13266 slotsdifunifndx 13273 imasvalstrd 13311 cnfldstr 14530 |
| Copyright terms: Public domain | W3C validator |