| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pleid | GIF version | ||
| Description: Utility theorem: self-referencing, index-independent form of df-ple 12785. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| pleid | ⊢ le = Slot (le‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ple 12785 | . 2 ⊢ le = Slot ;10 | |
| 2 | 10nn 9474 | . 2 ⊢ ;10 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12712 | 1 ⊢ le = Slot (le‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ‘cfv 5259 0cc0 7881 1c1 7882 ;cdc 9459 ndxcnx 12685 Slot cslot 12687 lecple 12772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-1rid 7988 ax-0id 7989 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5926 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-5 9054 df-6 9055 df-7 9056 df-8 9057 df-9 9058 df-dec 9460 df-ndx 12691 df-slot 12692 df-ple 12785 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |