| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pleid | GIF version | ||
| Description: Utility theorem: self-referencing, index-independent form of df-ple 12848. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| pleid | ⊢ le = Slot (le‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ple 12848 | . 2 ⊢ le = Slot ;10 | |
| 2 | 10nn 9501 | . 2 ⊢ ;10 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12775 | 1 ⊢ le = Slot (le‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ‘cfv 5268 0cc0 7907 1c1 7908 ;cdc 9486 ndxcnx 12748 Slot cslot 12750 lecple 12835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-1rid 8014 ax-0id 8015 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-dec 9487 df-ndx 12754 df-slot 12755 df-ple 12848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |