ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru GIF version

Theorem nqpru 7727
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqpru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7650 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7664 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
31, 2sylan 283 . . . . 5 ((𝐵P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
4 elprnqu 7657 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
51, 4sylan 283 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
65ad2ant2r 509 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥Q)
7 simprl 529 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (2nd𝐵))
8 vex 2802 . . . . . . . . . . . 12 𝑥 ∈ V
9 breq1 4085 . . . . . . . . . . . 12 (𝑙 = 𝑥 → (𝑙 <Q 𝐴𝑥 <Q 𝐴))
108, 9elab 2947 . . . . . . . . . . 11 (𝑥 ∈ {𝑙𝑙 <Q 𝐴} ↔ 𝑥 <Q 𝐴)
1110biimpri 133 . . . . . . . . . 10 (𝑥 <Q 𝐴𝑥 ∈ {𝑙𝑙 <Q 𝐴})
12 ltnqex 7724 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
13 gtnqex 7725 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1412, 13op1st 6282 . . . . . . . . . . 11 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
1514eleq2i 2296 . . . . . . . . . 10 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑙𝑙 <Q 𝐴})
1611, 15sylibr 134 . . . . . . . . 9 (𝑥 <Q 𝐴𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1716ad2antll 491 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
18 19.8a 1636 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
196, 7, 17, 18syl12anc 1269 . . . . . . 7 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
20 df-rex 2514 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2119, 20sylibr 134 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
22 elprnqu 7657 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
231, 22sylan 283 . . . . . . . 8 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
24 nqprlu 7722 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
25 ltdfpr 7681 . . . . . . . . 9 ((𝐵P ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2624, 25sylan2 286 . . . . . . . 8 ((𝐵P𝐴Q) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2723, 26syldan 282 . . . . . . 7 ((𝐵P𝐴 ∈ (2nd𝐵)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2827adantr 276 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2921, 28mpbird 167 . . . . 5 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
303, 29rexlimddv 2653 . . . 4 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
3130ex 115 . . 3 (𝐵P → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3231adantl 277 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3326ancoms 268 . . . . 5 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
3433biimpa 296 . . . 4 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
3515, 10bitri 184 . . . . . . . 8 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐴)
3635biimpi 120 . . . . . . 7 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑥 <Q 𝐴)
3736ad2antll 491 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → 𝑥 <Q 𝐴)
3837adantl 277 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 <Q 𝐴)
39 simpllr 534 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐵P)
40 simprrl 539 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 ∈ (2nd𝐵))
41 prcunqu 7660 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
421, 41sylan 283 . . . . . 6 ((𝐵P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4339, 40, 42syl2anc 411 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐴 ∈ (2nd𝐵))
4534, 44rexlimddv 2653 . . 3 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 ∈ (2nd𝐵))
4645ex 115 . 2 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ → 𝐴 ∈ (2nd𝐵)))
4732, 46impbid 129 1 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1538  wcel 2200  {cab 2215  wrex 2509  cop 3669   class class class wbr 4082  cfv 5314  1st c1st 6274  2nd c2nd 6275  Qcnq 7455   <Q cltq 7460  Pcnp 7466  <P cltp 7470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-inp 7641  df-iltp 7645
This theorem is referenced by:  prplnqu  7795  caucvgprprlemmu  7870  caucvgprprlemopu  7874  caucvgprprlemexbt  7881  caucvgprprlem2  7885  suplocexprlemloc  7896
  Copyright terms: Public domain W3C validator