ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru GIF version

Theorem nqpru 7550
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqpru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7473 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7487 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
31, 2sylan 283 . . . . 5 ((𝐵P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
4 elprnqu 7480 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
51, 4sylan 283 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
65ad2ant2r 509 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥Q)
7 simprl 529 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (2nd𝐵))
8 vex 2740 . . . . . . . . . . . 12 𝑥 ∈ V
9 breq1 4006 . . . . . . . . . . . 12 (𝑙 = 𝑥 → (𝑙 <Q 𝐴𝑥 <Q 𝐴))
108, 9elab 2881 . . . . . . . . . . 11 (𝑥 ∈ {𝑙𝑙 <Q 𝐴} ↔ 𝑥 <Q 𝐴)
1110biimpri 133 . . . . . . . . . 10 (𝑥 <Q 𝐴𝑥 ∈ {𝑙𝑙 <Q 𝐴})
12 ltnqex 7547 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
13 gtnqex 7548 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1412, 13op1st 6146 . . . . . . . . . . 11 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
1514eleq2i 2244 . . . . . . . . . 10 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑙𝑙 <Q 𝐴})
1611, 15sylibr 134 . . . . . . . . 9 (𝑥 <Q 𝐴𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1716ad2antll 491 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
18 19.8a 1590 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
196, 7, 17, 18syl12anc 1236 . . . . . . 7 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
20 df-rex 2461 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2119, 20sylibr 134 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
22 elprnqu 7480 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
231, 22sylan 283 . . . . . . . 8 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
24 nqprlu 7545 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
25 ltdfpr 7504 . . . . . . . . 9 ((𝐵P ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2624, 25sylan2 286 . . . . . . . 8 ((𝐵P𝐴Q) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2723, 26syldan 282 . . . . . . 7 ((𝐵P𝐴 ∈ (2nd𝐵)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2827adantr 276 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2921, 28mpbird 167 . . . . 5 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
303, 29rexlimddv 2599 . . . 4 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
3130ex 115 . . 3 (𝐵P → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3231adantl 277 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3326ancoms 268 . . . . 5 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
3433biimpa 296 . . . 4 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
3515, 10bitri 184 . . . . . . . 8 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐴)
3635biimpi 120 . . . . . . 7 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑥 <Q 𝐴)
3736ad2antll 491 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → 𝑥 <Q 𝐴)
3837adantl 277 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 <Q 𝐴)
39 simpllr 534 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐵P)
40 simprrl 539 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 ∈ (2nd𝐵))
41 prcunqu 7483 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
421, 41sylan 283 . . . . . 6 ((𝐵P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4339, 40, 42syl2anc 411 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐴 ∈ (2nd𝐵))
4534, 44rexlimddv 2599 . . 3 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 ∈ (2nd𝐵))
4645ex 115 . 2 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ → 𝐴 ∈ (2nd𝐵)))
4732, 46impbid 129 1 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1492  wcel 2148  {cab 2163  wrex 2456  cop 3595   class class class wbr 4003  cfv 5216  1st c1st 6138  2nd c2nd 6139  Qcnq 7278   <Q cltq 7283  Pcnp 7289  <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-inp 7464  df-iltp 7468
This theorem is referenced by:  prplnqu  7618  caucvgprprlemmu  7693  caucvgprprlemopu  7697  caucvgprprlemexbt  7704  caucvgprprlem2  7708  suplocexprlemloc  7719
  Copyright terms: Public domain W3C validator