ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqpru GIF version

Theorem nqpru 7678
Description: Comparing a fraction to a real can be done by whether it is an element of the upper cut, or by <P. (Contributed by Jim Kingdon, 29-Nov-2020.)
Assertion
Ref Expression
nqpru ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqpru
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7601 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 7615 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
31, 2sylan 283 . . . . 5 ((𝐵P𝐴 ∈ (2nd𝐵)) → ∃𝑥 ∈ (2nd𝐵)𝑥 <Q 𝐴)
4 elprnqu 7608 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
51, 4sylan 283 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
65ad2ant2r 509 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥Q)
7 simprl 529 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (2nd𝐵))
8 vex 2776 . . . . . . . . . . . 12 𝑥 ∈ V
9 breq1 4051 . . . . . . . . . . . 12 (𝑙 = 𝑥 → (𝑙 <Q 𝐴𝑥 <Q 𝐴))
108, 9elab 2919 . . . . . . . . . . 11 (𝑥 ∈ {𝑙𝑙 <Q 𝐴} ↔ 𝑥 <Q 𝐴)
1110biimpri 133 . . . . . . . . . 10 (𝑥 <Q 𝐴𝑥 ∈ {𝑙𝑙 <Q 𝐴})
12 ltnqex 7675 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
13 gtnqex 7676 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1412, 13op1st 6242 . . . . . . . . . . 11 (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐴}
1514eleq2i 2273 . . . . . . . . . 10 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑙𝑙 <Q 𝐴})
1611, 15sylibr 134 . . . . . . . . 9 (𝑥 <Q 𝐴𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1716ad2antll 491 . . . . . . . 8 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
18 19.8a 1614 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
196, 7, 17, 18syl12anc 1248 . . . . . . 7 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
20 df-rex 2491 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2119, 20sylibr 134 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
22 elprnqu 7608 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
231, 22sylan 283 . . . . . . . 8 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐴Q)
24 nqprlu 7673 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
25 ltdfpr 7632 . . . . . . . . 9 ((𝐵P ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2624, 25sylan2 286 . . . . . . . 8 ((𝐵P𝐴Q) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2723, 26syldan 282 . . . . . . 7 ((𝐵P𝐴 ∈ (2nd𝐵)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2827adantr 276 . . . . . 6 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
2921, 28mpbird 167 . . . . 5 (((𝐵P𝐴 ∈ (2nd𝐵)) ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 <Q 𝐴)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
303, 29rexlimddv 2629 . . . 4 ((𝐵P𝐴 ∈ (2nd𝐵)) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)
3130ex 115 . . 3 (𝐵P → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3231adantl 277 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) → 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
3326ancoms 268 . . . . 5 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))))
3433biimpa 296 . . . 4 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → ∃𝑥Q (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))
3515, 10bitri 184 . . . . . . . 8 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐴)
3635biimpi 120 . . . . . . 7 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝑥 <Q 𝐴)
3736ad2antll 491 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))) → 𝑥 <Q 𝐴)
3837adantl 277 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 <Q 𝐴)
39 simpllr 534 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐵P)
40 simprrl 539 . . . . . 6 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝑥 ∈ (2nd𝐵))
41 prcunqu 7611 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
421, 41sylan 283 . . . . . 6 ((𝐵P𝑥 ∈ (2nd𝐵)) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4339, 40, 42syl2anc 411 . . . . 5 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → (𝑥 <Q 𝐴𝐴 ∈ (2nd𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd𝐵) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩)))) → 𝐴 ∈ (2nd𝐵))
4534, 44rexlimddv 2629 . . 3 (((𝐴Q𝐵P) ∧ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 ∈ (2nd𝐵))
4645ex 115 . 2 ((𝐴Q𝐵P) → (𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ → 𝐴 ∈ (2nd𝐵)))
4732, 46impbid 129 1 ((𝐴Q𝐵P) → (𝐴 ∈ (2nd𝐵) ↔ 𝐵<P ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wex 1516  wcel 2177  {cab 2192  wrex 2486  cop 3638   class class class wbr 4048  cfv 5277  1st c1st 6234  2nd c2nd 6235  Qcnq 7406   <Q cltq 7411  Pcnp 7417  <P cltp 7421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-inp 7592  df-iltp 7596
This theorem is referenced by:  prplnqu  7746  caucvgprprlemmu  7821  caucvgprprlemopu  7825  caucvgprprlemexbt  7832  caucvgprprlem2  7836  suplocexprlemloc  7847
  Copyright terms: Public domain W3C validator