ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprl GIF version

Theorem nqprl 7383
Description: Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <P. (Contributed by Jim Kingdon, 8-Jul-2020.)
Assertion
Ref Expression
nqprl ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqprl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7307 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnmaxl 7320 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (1st𝐵)) → ∃𝑥 ∈ (1st𝐵)𝐴 <Q 𝑥)
31, 2sylan 281 . . . . 5 ((𝐵P𝐴 ∈ (1st𝐵)) → ∃𝑥 ∈ (1st𝐵)𝐴 <Q 𝑥)
4 elprnql 7313 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → 𝑥Q)
51, 4sylan 281 . . . . . . . . 9 ((𝐵P𝑥 ∈ (1st𝐵)) → 𝑥Q)
65ad2ant2r 501 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥Q)
7 vex 2692 . . . . . . . . . . . 12 𝑥 ∈ V
8 breq2 3941 . . . . . . . . . . . 12 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
97, 8elab 2832 . . . . . . . . . . 11 (𝑥 ∈ {𝑢𝐴 <Q 𝑢} ↔ 𝐴 <Q 𝑥)
109biimpri 132 . . . . . . . . . 10 (𝐴 <Q 𝑥𝑥 ∈ {𝑢𝐴 <Q 𝑢})
11 ltnqex 7381 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
12 gtnqex 7382 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1311, 12op2nd 6053 . . . . . . . . . . 11 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
1413eleq2i 2207 . . . . . . . . . 10 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑢𝐴 <Q 𝑢})
1510, 14sylibr 133 . . . . . . . . 9 (𝐴 <Q 𝑥𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1615ad2antll 483 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
17 simprl 521 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥 ∈ (1st𝐵))
18 19.8a 1570 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
196, 16, 17, 18syl12anc 1215 . . . . . . 7 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
20 df-rex 2423 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2119, 20sylibr 133 . . . . . 6 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))
22 elprnql 7313 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (1st𝐵)) → 𝐴Q)
231, 22sylan 281 . . . . . . . 8 ((𝐵P𝐴 ∈ (1st𝐵)) → 𝐴Q)
24 simpl 108 . . . . . . . 8 ((𝐵P𝐴 ∈ (1st𝐵)) → 𝐵P)
25 nqprlu 7379 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
26 ltdfpr 7338 . . . . . . . . 9 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2725, 26sylan 281 . . . . . . . 8 ((𝐴Q𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2823, 24, 27syl2anc 409 . . . . . . 7 ((𝐵P𝐴 ∈ (1st𝐵)) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2928adantr 274 . . . . . 6 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
3021, 29mpbird 166 . . . . 5 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵)
313, 30rexlimddv 2557 . . . 4 ((𝐵P𝐴 ∈ (1st𝐵)) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵)
3231ex 114 . . 3 (𝐵P → (𝐴 ∈ (1st𝐵) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
3332adantl 275 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
3427biimpa 294 . . . 4 (((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) → ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))
3514, 9bitri 183 . . . . . . . 8 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
3635biimpi 119 . . . . . . 7 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 <Q 𝑥)
3736ad2antrl 482 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))) → 𝐴 <Q 𝑥)
3837adantl 275 . . . . 5 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐴 <Q 𝑥)
39 simpllr 524 . . . . . 6 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐵P)
40 simprrr 530 . . . . . 6 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (1st𝐵))
41 prcdnql 7316 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
421, 41sylan 281 . . . . . 6 ((𝐵P𝑥 ∈ (1st𝐵)) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
4339, 40, 42syl2anc 409 . . . . 5 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐴 ∈ (1st𝐵))
4534, 44rexlimddv 2557 . . 3 (((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) → 𝐴 ∈ (1st𝐵))
4645ex 114 . 2 ((𝐴Q𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵𝐴 ∈ (1st𝐵)))
4733, 46impbid 128 1 ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1469  wcel 1481  {cab 2126  wrex 2418  cop 3535   class class class wbr 3937  cfv 5131  1st c1st 6044  2nd c2nd 6045  Qcnq 7112   <Q cltq 7117  Pcnp 7123  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iltp 7302
This theorem is referenced by:  caucvgprlemcanl  7476  cauappcvgprlem1  7491  archrecpr  7496  caucvgprlem1  7511  caucvgprprlemml  7526  caucvgprprlemopl  7529
  Copyright terms: Public domain W3C validator