Step | Hyp | Ref
| Expression |
1 | | prop 7437 |
. . . . . 6
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
2 | | prnmaxl 7450 |
. . . . . 6
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐴 ∈ (1st
‘𝐵)) →
∃𝑥 ∈
(1st ‘𝐵)𝐴 <Q 𝑥) |
3 | 1, 2 | sylan 281 |
. . . . 5
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) →
∃𝑥 ∈
(1st ‘𝐵)𝐴 <Q 𝑥) |
4 | | elprnql 7443 |
. . . . . . . . . 10
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐵)) → 𝑥 ∈
Q) |
5 | 1, 4 | sylan 281 |
. . . . . . . . 9
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (1st
‘𝐵)) → 𝑥 ∈
Q) |
6 | 5 | ad2ant2r 506 |
. . . . . . . 8
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → 𝑥 ∈
Q) |
7 | | vex 2733 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
8 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) |
9 | 7, 8 | elab 2874 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑢 ∣ 𝐴 <Q 𝑢} ↔ 𝐴 <Q 𝑥) |
10 | 9 | biimpri 132 |
. . . . . . . . . 10
⊢ (𝐴 <Q
𝑥 → 𝑥 ∈ {𝑢 ∣ 𝐴 <Q 𝑢}) |
11 | | ltnqex 7511 |
. . . . . . . . . . . 12
⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V |
12 | | gtnqex 7512 |
. . . . . . . . . . . 12
⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V |
13 | 11, 12 | op2nd 6126 |
. . . . . . . . . . 11
⊢
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) = {𝑢 ∣ 𝐴 <Q 𝑢} |
14 | 13 | eleq2i 2237 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝑥 ∈ {𝑢 ∣ 𝐴 <Q 𝑢}) |
15 | 10, 14 | sylibr 133 |
. . . . . . . . 9
⊢ (𝐴 <Q
𝑥 → 𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
16 | 15 | ad2antll 488 |
. . . . . . . 8
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → 𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉)) |
17 | | simprl 526 |
. . . . . . . 8
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → 𝑥 ∈ (1st
‘𝐵)) |
18 | | 19.8a 1583 |
. . . . . . . 8
⊢ ((𝑥 ∈ Q ∧
(𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵))) →
∃𝑥(𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
19 | 6, 16, 17, 18 | syl12anc 1231 |
. . . . . . 7
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → ∃𝑥(𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
20 | | df-rex 2454 |
. . . . . . 7
⊢
(∃𝑥 ∈
Q (𝑥 ∈
(2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)) ↔
∃𝑥(𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
21 | 19, 20 | sylibr 133 |
. . . . . 6
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵))) |
22 | | elprnql 7443 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐴 ∈ (1st
‘𝐵)) → 𝐴 ∈
Q) |
23 | 1, 22 | sylan 281 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) → 𝐴 ∈
Q) |
24 | | simpl 108 |
. . . . . . . 8
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) → 𝐵 ∈
P) |
25 | | nqprlu 7509 |
. . . . . . . . 9
⊢ (𝐴 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈
P) |
26 | | ltdfpr 7468 |
. . . . . . . . 9
⊢
((〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P
∧ 𝐵 ∈
P) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
27 | 25, 26 | sylan 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ P)
→ (〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
28 | 23, 24, 27 | syl2anc 409 |
. . . . . . 7
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) →
(〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
29 | 28 | adantr 274 |
. . . . . 6
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) |
30 | 21, 29 | mpbird 166 |
. . . . 5
⊢ (((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) ∧ (𝑥 ∈ (1st
‘𝐵) ∧ 𝐴 <Q
𝑥)) → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) |
31 | 3, 30 | rexlimddv 2592 |
. . . 4
⊢ ((𝐵 ∈ P ∧
𝐴 ∈ (1st
‘𝐵)) →
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) |
32 | 31 | ex 114 |
. . 3
⊢ (𝐵 ∈ P →
(𝐴 ∈ (1st
‘𝐵) →
〈{𝑙 ∣ 𝑙 <Q
𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵)) |
33 | 32 | adantl 275 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ P)
→ (𝐴 ∈
(1st ‘𝐵)
→ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵)) |
34 | 27 | biimpa 294 |
. . . 4
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) → ∃𝑥 ∈ Q (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵))) |
35 | 14, 9 | bitri 183 |
. . . . . . . 8
⊢ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝐴 <Q
𝑥) |
36 | 35 | biimpi 119 |
. . . . . . 7
⊢ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) → 𝐴 <Q
𝑥) |
37 | 36 | ad2antrl 487 |
. . . . . 6
⊢ ((𝑥 ∈ Q ∧
(𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵))) → 𝐴 <Q
𝑥) |
38 | 37 | adantl 275 |
. . . . 5
⊢ ((((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) ∧ (𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) → 𝐴 <Q
𝑥) |
39 | | simpllr 529 |
. . . . . 6
⊢ ((((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) ∧ (𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) → 𝐵 ∈
P) |
40 | | simprrr 535 |
. . . . . 6
⊢ ((((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) ∧ (𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) → 𝑥 ∈ (1st
‘𝐵)) |
41 | | prcdnql 7446 |
. . . . . . 7
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑥 ∈ (1st
‘𝐵)) → (𝐴 <Q
𝑥 → 𝐴 ∈ (1st ‘𝐵))) |
42 | 1, 41 | sylan 281 |
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝑥 ∈ (1st
‘𝐵)) → (𝐴 <Q
𝑥 → 𝐴 ∈ (1st ‘𝐵))) |
43 | 39, 40, 42 | syl2anc 409 |
. . . . 5
⊢ ((((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) ∧ (𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) → (𝐴 <Q
𝑥 → 𝐴 ∈ (1st ‘𝐵))) |
44 | 38, 43 | mpd 13 |
. . . 4
⊢ ((((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) ∧ (𝑥 ∈ Q ∧ (𝑥 ∈ (2nd
‘〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st
‘𝐵)))) → 𝐴 ∈ (1st
‘𝐵)) |
45 | 34, 44 | rexlimddv 2592 |
. . 3
⊢ (((𝐴 ∈ Q ∧
𝐵 ∈ P)
∧ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵) → 𝐴 ∈ (1st ‘𝐵)) |
46 | 45 | ex 114 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ P)
→ (〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵 → 𝐴 ∈ (1st ‘𝐵))) |
47 | 33, 46 | impbid 128 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ P)
→ (𝐴 ∈
(1st ‘𝐵)
↔ 〈{𝑙 ∣
𝑙
<Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 𝐵)) |