ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprl GIF version

Theorem nqprl 7492
Description: Comparing a fraction to a real can be done by whether it is an element of the lower cut, or by <P. (Contributed by Jim Kingdon, 8-Jul-2020.)
Assertion
Ref Expression
nqprl ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
Distinct variable group:   𝐴,𝑙,𝑢
Allowed substitution hints:   𝐵(𝑢,𝑙)

Proof of Theorem nqprl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnmaxl 7429 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (1st𝐵)) → ∃𝑥 ∈ (1st𝐵)𝐴 <Q 𝑥)
31, 2sylan 281 . . . . 5 ((𝐵P𝐴 ∈ (1st𝐵)) → ∃𝑥 ∈ (1st𝐵)𝐴 <Q 𝑥)
4 elprnql 7422 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → 𝑥Q)
51, 4sylan 281 . . . . . . . . 9 ((𝐵P𝑥 ∈ (1st𝐵)) → 𝑥Q)
65ad2ant2r 501 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥Q)
7 vex 2729 . . . . . . . . . . . 12 𝑥 ∈ V
8 breq2 3986 . . . . . . . . . . . 12 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
97, 8elab 2870 . . . . . . . . . . 11 (𝑥 ∈ {𝑢𝐴 <Q 𝑢} ↔ 𝐴 <Q 𝑥)
109biimpri 132 . . . . . . . . . 10 (𝐴 <Q 𝑥𝑥 ∈ {𝑢𝐴 <Q 𝑢})
11 ltnqex 7490 . . . . . . . . . . . 12 {𝑙𝑙 <Q 𝐴} ∈ V
12 gtnqex 7491 . . . . . . . . . . . 12 {𝑢𝐴 <Q 𝑢} ∈ V
1311, 12op2nd 6115 . . . . . . . . . . 11 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
1413eleq2i 2233 . . . . . . . . . 10 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝑥 ∈ {𝑢𝐴 <Q 𝑢})
1510, 14sylibr 133 . . . . . . . . 9 (𝐴 <Q 𝑥𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
1615ad2antll 483 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩))
17 simprl 521 . . . . . . . 8 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → 𝑥 ∈ (1st𝐵))
18 19.8a 1578 . . . . . . . 8 ((𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
196, 16, 17, 18syl12anc 1226 . . . . . . 7 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
20 df-rex 2450 . . . . . . 7 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)) ↔ ∃𝑥(𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2119, 20sylibr 133 . . . . . 6 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))
22 elprnql 7422 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐴 ∈ (1st𝐵)) → 𝐴Q)
231, 22sylan 281 . . . . . . . 8 ((𝐵P𝐴 ∈ (1st𝐵)) → 𝐴Q)
24 simpl 108 . . . . . . . 8 ((𝐵P𝐴 ∈ (1st𝐵)) → 𝐵P)
25 nqprlu 7488 . . . . . . . . 9 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
26 ltdfpr 7447 . . . . . . . . 9 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2725, 26sylan 281 . . . . . . . 8 ((𝐴Q𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2823, 24, 27syl2anc 409 . . . . . . 7 ((𝐵P𝐴 ∈ (1st𝐵)) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
2928adantr 274 . . . . . 6 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵 ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))))
3021, 29mpbird 166 . . . . 5 (((𝐵P𝐴 ∈ (1st𝐵)) ∧ (𝑥 ∈ (1st𝐵) ∧ 𝐴 <Q 𝑥)) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵)
313, 30rexlimddv 2588 . . . 4 ((𝐵P𝐴 ∈ (1st𝐵)) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵)
3231ex 114 . . 3 (𝐵P → (𝐴 ∈ (1st𝐵) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
3332adantl 275 . 2 ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
3427biimpa 294 . . . 4 (((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) → ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))
3514, 9bitri 183 . . . . . . . 8 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
3635biimpi 119 . . . . . . 7 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) → 𝐴 <Q 𝑥)
3736ad2antrl 482 . . . . . 6 ((𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵))) → 𝐴 <Q 𝑥)
3837adantl 275 . . . . 5 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐴 <Q 𝑥)
39 simpllr 524 . . . . . 6 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐵P)
40 simprrr 530 . . . . . 6 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝑥 ∈ (1st𝐵))
41 prcdnql 7425 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (1st𝐵)) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
421, 41sylan 281 . . . . . 6 ((𝐵P𝑥 ∈ (1st𝐵)) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
4339, 40, 42syl2anc 409 . . . . 5 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → (𝐴 <Q 𝑥𝐴 ∈ (1st𝐵)))
4438, 43mpd 13 . . . 4 ((((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) ∧ (𝑥Q ∧ (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st𝐵)))) → 𝐴 ∈ (1st𝐵))
4534, 44rexlimddv 2588 . . 3 (((𝐴Q𝐵P) ∧ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵) → 𝐴 ∈ (1st𝐵))
4645ex 114 . 2 ((𝐴Q𝐵P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵𝐴 ∈ (1st𝐵)))
4733, 46impbid 128 1 ((𝐴Q𝐵P) → (𝐴 ∈ (1st𝐵) ↔ ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1480  wcel 2136  {cab 2151  wrex 2445  cop 3579   class class class wbr 3982  cfv 5188  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  caucvgprlemcanl  7585  cauappcvgprlem1  7600  archrecpr  7605  caucvgprlem1  7620  caucvgprprlemml  7635  caucvgprprlemopl  7638
  Copyright terms: Public domain W3C validator