![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addmodlteqALT | GIF version |
Description: Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10411 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
addmodlteqALT | ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 10195 | . . . . 5 ⊢ (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) | |
2 | elfzoelz 10160 | . . . . . . . 8 ⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ) | |
3 | simplrr 536 | . . . . . . . . . 10 ⊢ (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → 𝑁 ∈ ℕ) | |
4 | nn0z 9286 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ) | |
5 | 4 | ad2antrl 490 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) → 𝐼 ∈ ℤ) |
6 | zaddcl 9306 | . . . . . . . . . . 11 ⊢ ((𝐼 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ) | |
7 | 5, 6 | sylan 283 | . . . . . . . . . 10 ⊢ (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐼 + 𝑆) ∈ ℤ) |
8 | zaddcl 9306 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ) | |
9 | 8 | adantlr 477 | . . . . . . . . . 10 ⊢ (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝐽 + 𝑆) ∈ ℤ) |
10 | 3, 7, 9 | 3jca 1178 | . . . . . . . . 9 ⊢ (((𝐽 ∈ ℤ ∧ (𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ)) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)) |
11 | 10 | exp31 364 | . . . . . . . 8 ⊢ (𝐽 ∈ ℤ → ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)))) |
12 | 2, 11 | syl 14 | . . . . . . 7 ⊢ (𝐽 ∈ (0..^𝑁) → ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)))) |
13 | 12 | com12 30 | . . . . . 6 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)))) |
14 | 13 | 3adant3 1018 | . . . . 5 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)))) |
15 | 1, 14 | sylbi 121 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝑆 ∈ ℤ → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)))) |
16 | 15 | 3imp 1194 | . . 3 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ)) |
17 | moddvds 11819 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐼 + 𝑆) ∈ ℤ ∧ (𝐽 + 𝑆) ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆)))) | |
18 | 16, 17 | syl 14 | . 2 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆)))) |
19 | elfzoel2 10159 | . . . . 5 ⊢ (𝐼 ∈ (0..^𝑁) → 𝑁 ∈ ℤ) | |
20 | zcn 9271 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
21 | 20 | subid1d 8270 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁) |
22 | 21 | eqcomd 2193 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 = (𝑁 − 0)) |
23 | 19, 22 | syl 14 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑁) → 𝑁 = (𝑁 − 0)) |
24 | 23 | 3ad2ant1 1019 | . . 3 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → 𝑁 = (𝑁 − 0)) |
25 | elfzoelz 10160 | . . . . 5 ⊢ (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℤ) | |
26 | 25 | zcnd 9389 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑁) → 𝐼 ∈ ℂ) |
27 | 2 | zcnd 9389 | . . . 4 ⊢ (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ) |
28 | zcn 9271 | . . . 4 ⊢ (𝑆 ∈ ℤ → 𝑆 ∈ ℂ) | |
29 | pnpcan2 8210 | . . . 4 ⊢ ((𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼 − 𝐽)) | |
30 | 26, 27, 28, 29 | syl3an 1290 | . . 3 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝐼 + 𝑆) − (𝐽 + 𝑆)) = (𝐼 − 𝐽)) |
31 | 24, 30 | breq12d 4028 | . 2 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (𝑁 ∥ ((𝐼 + 𝑆) − (𝐽 + 𝑆)) ↔ (𝑁 − 0) ∥ (𝐼 − 𝐽))) |
32 | fzocongeq 11877 | . . 3 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑁 − 0) ∥ (𝐼 − 𝐽) ↔ 𝐼 = 𝐽)) | |
33 | 32 | 3adant3 1018 | . 2 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → ((𝑁 − 0) ∥ (𝐼 − 𝐽) ↔ 𝐼 = 𝐽)) |
34 | 18, 31, 33 | 3bitrd 214 | 1 ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℂcc 7822 0cc0 7824 + caddc 7827 < clt 8005 − cmin 8141 ℕcn 8932 ℕ0cn0 9189 ℤcz 9266 ..^cfzo 10155 mod cmo 10335 ∥ cdvds 11807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 ax-caucvg 7944 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-fz 10022 df-fzo 10156 df-fl 10283 df-mod 10336 df-seqfrec 10459 df-exp 10533 df-cj 10864 df-re 10865 df-im 10866 df-rsqrt 11020 df-abs 11021 df-dvds 11808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |