| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9p4e13 | GIF version | ||
| Description: 9 + 4 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 9p4e13 | ⊢ (9 + 4) = ;13 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn0 9393 | . 2 ⊢ 9 ∈ ℕ0 | |
| 2 | 3nn0 9387 | . 2 ⊢ 3 ∈ ℕ0 | |
| 3 | 2nn0 9386 | . 2 ⊢ 2 ∈ ℕ0 | |
| 4 | df-4 9171 | . 2 ⊢ 4 = (3 + 1) | |
| 5 | df-3 9170 | . 2 ⊢ 3 = (2 + 1) | |
| 6 | 9p3e12 9665 | . 2 ⊢ (9 + 3) = ;12 | |
| 7 | 1, 2, 3, 4, 5, 6 | 6p5lem 9647 | 1 ⊢ (9 + 4) = ;13 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6001 1c1 8000 + caddc 8002 2c2 9161 3c3 9162 4c4 9163 9c9 9168 ;cdc 9578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-dec 9579 |
| This theorem is referenced by: 9p5e14 9667 9t7e63 9704 |
| Copyright terms: Public domain | W3C validator |