| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9270 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnre 9016 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 3 | nngt0 9034 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 4 | 0re 8045 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 5 | ltle 8133 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
| 7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
| 8 | 0le0 9098 | . . . 4 ⊢ 0 ≤ 0 | |
| 9 | breq2 4038 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
| 11 | 7, 10 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 0cc0 7898 < clt 8080 ≤ cle 8081 ℕcn 9009 ℕ0cn0 9268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-inn 9010 df-n0 9269 |
| This theorem is referenced by: nn0nlt0 9294 nn0ge0i 9295 nn0le0eq0 9296 nn0p1gt0 9297 0mnnnnn0 9300 nn0addge1 9314 nn0addge2 9315 nn0ge0d 9324 elnn0z 9358 nn0negleid 9413 nn0lt10b 9425 nn0ge0div 9432 nn0pnfge0 9885 xnn0xadd0 9961 0elfz 10212 fz0fzelfz0 10221 fz0fzdiffz0 10224 fzctr 10227 difelfzle 10228 elfzodifsumelfzo 10296 fvinim0ffz 10336 subfzo0 10337 adddivflid 10401 modqmuladdnn0 10479 modfzo0difsn 10506 uzennn 10547 bernneq 10771 bernneq3 10773 zzlesq 10819 faclbnd 10852 faclbnd6 10855 facubnd 10856 bcval5 10874 fihashneq0 10905 nn0maxcl 11409 dvdseq 12032 evennn02n 12066 nn0ehalf 12087 nn0oddm1d2 12093 bitsinv1 12146 gcdn0gt0 12172 nn0gcdid0 12175 absmulgcd 12211 algcvgblem 12244 algcvga 12246 lcmgcdnn 12277 hashgcdlem 12433 odzdvds 12441 pcfaclem 12545 znnen 12642 logbgcd1irr 15311 lgsdinn0 15397 |
| Copyright terms: Public domain | W3C validator |