| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9367 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnre 9113 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 3 | nngt0 9131 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 4 | 0re 8142 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 5 | ltle 8230 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
| 7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
| 8 | 0le0 9195 | . . . 4 ⊢ 0 ≤ 0 | |
| 9 | breq2 4086 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
| 11 | 7, 10 | jaoi 721 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 0cc0 7995 < clt 8177 ≤ cle 8178 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0nlt0 9391 nn0ge0i 9392 nn0le0eq0 9393 nn0p1gt0 9394 0mnnnnn0 9397 nn0addge1 9411 nn0addge2 9412 nn0ge0d 9421 elnn0z 9455 nn0negleid 9511 nn0lt10b 9523 nn0ge0div 9530 nn0pnfge0 9983 xnn0xadd0 10059 0elfz 10310 fz0fzelfz0 10319 fz0fzdiffz0 10322 fzctr 10325 difelfzle 10326 fzoun 10375 elfzodifsumelfzo 10402 fvinim0ffz 10442 subfzo0 10443 adddivflid 10507 modqmuladdnn0 10585 modfzo0difsn 10612 uzennn 10653 bernneq 10877 bernneq3 10879 zzlesq 10925 faclbnd 10958 faclbnd6 10961 facubnd 10962 bcval5 10980 fihashneq0 11011 ccat0 11126 nn0maxcl 11731 dvdseq 12354 evennn02n 12388 nn0ehalf 12409 nn0oddm1d2 12415 bitsinv1 12468 gcdn0gt0 12494 nn0gcdid0 12497 absmulgcd 12533 algcvgblem 12566 algcvga 12568 lcmgcdnn 12599 hashgcdlem 12755 odzdvds 12763 pcfaclem 12867 znnen 12964 logbgcd1irr 15635 lgsdinn0 15721 |
| Copyright terms: Public domain | W3C validator |