![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9242 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnre 8989 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
3 | nngt0 9007 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 0re 8019 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | ltle 8107 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
8 | 0le0 9071 | . . . 4 ⊢ 0 ≤ 0 | |
9 | breq2 4033 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
11 | 7, 10 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 ≤ cle 8055 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-inn 8983 df-n0 9241 |
This theorem is referenced by: nn0nlt0 9266 nn0ge0i 9267 nn0le0eq0 9268 nn0p1gt0 9269 0mnnnnn0 9272 nn0addge1 9286 nn0addge2 9287 nn0ge0d 9296 elnn0z 9330 nn0negleid 9385 nn0lt10b 9397 nn0ge0div 9404 nn0pnfge0 9857 xnn0xadd0 9933 0elfz 10184 fz0fzelfz0 10193 fz0fzdiffz0 10196 fzctr 10199 difelfzle 10200 elfzodifsumelfzo 10268 fvinim0ffz 10308 subfzo0 10309 adddivflid 10361 modqmuladdnn0 10439 modfzo0difsn 10466 uzennn 10507 bernneq 10731 bernneq3 10733 zzlesq 10779 faclbnd 10812 faclbnd6 10815 facubnd 10816 bcval5 10834 fihashneq0 10865 dvdseq 11990 evennn02n 12023 nn0ehalf 12044 nn0oddm1d2 12050 gcdn0gt0 12115 nn0gcdid0 12118 absmulgcd 12154 algcvgblem 12187 algcvga 12189 lcmgcdnn 12220 hashgcdlem 12376 odzdvds 12383 pcfaclem 12487 znnen 12555 logbgcd1irr 15099 lgsdinn0 15164 |
Copyright terms: Public domain | W3C validator |