Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9112 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnre 8860 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
3 | nngt0 8878 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 0re 7895 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | ltle 7982 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
6 | 4, 5 | mpan 421 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
8 | 0le0 8942 | . . . 4 ⊢ 0 ≤ 0 | |
9 | breq2 3985 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
10 | 8, 9 | mpbiri 167 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
11 | 7, 10 | jaoi 706 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 0cc0 7749 < clt 7929 ≤ cle 7930 ℕcn 8853 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-inn 8854 df-n0 9111 |
This theorem is referenced by: nn0nlt0 9136 nn0ge0i 9137 nn0le0eq0 9138 nn0p1gt0 9139 0mnnnnn0 9142 nn0addge1 9156 nn0addge2 9157 nn0ge0d 9166 elnn0z 9200 nn0negleid 9255 nn0lt10b 9267 nn0ge0div 9274 nn0pnfge0 9723 xnn0xadd0 9799 0elfz 10049 fz0fzelfz0 10058 fz0fzdiffz0 10061 fzctr 10064 difelfzle 10065 elfzodifsumelfzo 10132 fvinim0ffz 10172 subfzo0 10173 adddivflid 10223 modqmuladdnn0 10299 modfzo0difsn 10326 uzennn 10367 bernneq 10571 bernneq3 10573 faclbnd 10650 faclbnd6 10653 facubnd 10654 bcval5 10672 fihashneq0 10704 dvdseq 11782 evennn02n 11815 nn0ehalf 11836 nn0oddm1d2 11842 gcdn0gt0 11907 nn0gcdid0 11910 absmulgcd 11946 algcvgblem 11977 algcvga 11979 lcmgcdnn 12010 hashgcdlem 12166 odzdvds 12173 pcfaclem 12275 znnen 12327 logbgcd1irr 13485 lgsdinn0 13549 |
Copyright terms: Public domain | W3C validator |