| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9312 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnre 9058 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 3 | nngt0 9076 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 4 | 0re 8087 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 5 | ltle 8175 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
| 7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
| 8 | 0le0 9140 | . . . 4 ⊢ 0 ≤ 0 | |
| 9 | breq2 4054 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
| 11 | 7, 10 | jaoi 718 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 ℝcr 7939 0cc0 7940 < clt 8122 ≤ cle 8123 ℕcn 9051 ℕ0cn0 9310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-xp 4688 df-cnv 4690 df-iota 5240 df-fv 5287 df-ov 5959 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-inn 9052 df-n0 9311 |
| This theorem is referenced by: nn0nlt0 9336 nn0ge0i 9337 nn0le0eq0 9338 nn0p1gt0 9339 0mnnnnn0 9342 nn0addge1 9356 nn0addge2 9357 nn0ge0d 9366 elnn0z 9400 nn0negleid 9456 nn0lt10b 9468 nn0ge0div 9475 nn0pnfge0 9928 xnn0xadd0 10004 0elfz 10255 fz0fzelfz0 10264 fz0fzdiffz0 10267 fzctr 10270 difelfzle 10271 fzoun 10320 elfzodifsumelfzo 10347 fvinim0ffz 10387 subfzo0 10388 adddivflid 10452 modqmuladdnn0 10530 modfzo0difsn 10557 uzennn 10598 bernneq 10822 bernneq3 10824 zzlesq 10870 faclbnd 10903 faclbnd6 10906 facubnd 10907 bcval5 10925 fihashneq0 10956 ccat0 11070 nn0maxcl 11606 dvdseq 12229 evennn02n 12263 nn0ehalf 12284 nn0oddm1d2 12290 bitsinv1 12343 gcdn0gt0 12369 nn0gcdid0 12372 absmulgcd 12408 algcvgblem 12441 algcvga 12443 lcmgcdnn 12474 hashgcdlem 12630 odzdvds 12638 pcfaclem 12742 znnen 12839 logbgcd1irr 15509 lgsdinn0 15595 |
| Copyright terms: Public domain | W3C validator |