Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnre 8885 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
3 | nngt0 8903 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 0re 7920 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | ltle 8007 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
6 | 4, 5 | mpan 422 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
8 | 0le0 8967 | . . . 4 ⊢ 0 ≤ 0 | |
9 | breq2 3993 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
10 | 8, 9 | mpbiri 167 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
11 | 7, 10 | jaoi 711 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
12 | 1, 11 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 ≤ cle 7955 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0nlt0 9161 nn0ge0i 9162 nn0le0eq0 9163 nn0p1gt0 9164 0mnnnnn0 9167 nn0addge1 9181 nn0addge2 9182 nn0ge0d 9191 elnn0z 9225 nn0negleid 9280 nn0lt10b 9292 nn0ge0div 9299 nn0pnfge0 9748 xnn0xadd0 9824 0elfz 10074 fz0fzelfz0 10083 fz0fzdiffz0 10086 fzctr 10089 difelfzle 10090 elfzodifsumelfzo 10157 fvinim0ffz 10197 subfzo0 10198 adddivflid 10248 modqmuladdnn0 10324 modfzo0difsn 10351 uzennn 10392 bernneq 10596 bernneq3 10598 faclbnd 10675 faclbnd6 10678 facubnd 10679 bcval5 10697 fihashneq0 10729 dvdseq 11808 evennn02n 11841 nn0ehalf 11862 nn0oddm1d2 11868 gcdn0gt0 11933 nn0gcdid0 11936 absmulgcd 11972 algcvgblem 12003 algcvga 12005 lcmgcdnn 12036 hashgcdlem 12192 odzdvds 12199 pcfaclem 12301 znnen 12353 logbgcd1irr 13679 lgsdinn0 13743 |
Copyright terms: Public domain | W3C validator |