![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9178 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nnre 8926 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
3 | nngt0 8944 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
4 | 0re 7957 | . . . . 5 ⊢ 0 ∈ ℝ | |
5 | ltle 8045 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
8 | 0le0 9008 | . . . 4 ⊢ 0 ≤ 0 | |
9 | breq2 4008 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
11 | 7, 10 | jaoi 716 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∈ wcel 2148 class class class wbr 4004 ℝcr 7810 0cc0 7811 < clt 7992 ≤ cle 7993 ℕcn 8919 ℕ0cn0 9176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-opab 4066 df-xp 4633 df-cnv 4635 df-iota 5179 df-fv 5225 df-ov 5878 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-inn 8920 df-n0 9177 |
This theorem is referenced by: nn0nlt0 9202 nn0ge0i 9203 nn0le0eq0 9204 nn0p1gt0 9205 0mnnnnn0 9208 nn0addge1 9222 nn0addge2 9223 nn0ge0d 9232 elnn0z 9266 nn0negleid 9321 nn0lt10b 9333 nn0ge0div 9340 nn0pnfge0 9791 xnn0xadd0 9867 0elfz 10118 fz0fzelfz0 10127 fz0fzdiffz0 10130 fzctr 10133 difelfzle 10134 elfzodifsumelfzo 10201 fvinim0ffz 10241 subfzo0 10242 adddivflid 10292 modqmuladdnn0 10368 modfzo0difsn 10395 uzennn 10436 bernneq 10641 bernneq3 10643 faclbnd 10721 faclbnd6 10724 facubnd 10725 bcval5 10743 fihashneq0 10774 dvdseq 11854 evennn02n 11887 nn0ehalf 11908 nn0oddm1d2 11914 gcdn0gt0 11979 nn0gcdid0 11982 absmulgcd 12018 algcvgblem 12049 algcvga 12051 lcmgcdnn 12082 hashgcdlem 12238 odzdvds 12245 pcfaclem 12347 znnen 12399 logbgcd1irr 14388 lgsdinn0 14452 |
Copyright terms: Public domain | W3C validator |