| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0 | GIF version | ||
| Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| Ref | Expression |
|---|---|
| nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9253 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | nnre 8999 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 3 | nngt0 9017 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 4 | 0re 8028 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 5 | ltle 8116 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁)) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁)) |
| 7 | 2, 3, 6 | sylc 62 | . . 3 ⊢ (𝑁 ∈ ℕ → 0 ≤ 𝑁) |
| 8 | 0le0 9081 | . . . 4 ⊢ 0 ≤ 0 | |
| 9 | breq2 4038 | . . . 4 ⊢ (𝑁 = 0 → (0 ≤ 𝑁 ↔ 0 ≤ 0)) | |
| 10 | 8, 9 | mpbiri 168 | . . 3 ⊢ (𝑁 = 0 → 0 ≤ 𝑁) |
| 11 | 7, 10 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → 0 ≤ 𝑁) |
| 12 | 1, 11 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ℝcr 7880 0cc0 7881 < clt 8063 ≤ cle 8064 ℕcn 8992 ℕ0cn0 9251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-iota 5220 df-fv 5267 df-ov 5926 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-inn 8993 df-n0 9252 |
| This theorem is referenced by: nn0nlt0 9277 nn0ge0i 9278 nn0le0eq0 9279 nn0p1gt0 9280 0mnnnnn0 9283 nn0addge1 9297 nn0addge2 9298 nn0ge0d 9307 elnn0z 9341 nn0negleid 9396 nn0lt10b 9408 nn0ge0div 9415 nn0pnfge0 9868 xnn0xadd0 9944 0elfz 10195 fz0fzelfz0 10204 fz0fzdiffz0 10207 fzctr 10210 difelfzle 10211 elfzodifsumelfzo 10279 fvinim0ffz 10319 subfzo0 10320 adddivflid 10384 modqmuladdnn0 10462 modfzo0difsn 10489 uzennn 10530 bernneq 10754 bernneq3 10756 zzlesq 10802 faclbnd 10835 faclbnd6 10838 facubnd 10839 bcval5 10857 fihashneq0 10888 nn0maxcl 11392 dvdseq 12015 evennn02n 12049 nn0ehalf 12070 nn0oddm1d2 12076 bitsinv1 12129 gcdn0gt0 12155 nn0gcdid0 12158 absmulgcd 12194 algcvgblem 12227 algcvga 12229 lcmgcdnn 12260 hashgcdlem 12416 odzdvds 12424 pcfaclem 12528 znnen 12625 logbgcd1irr 15213 lgsdinn0 15299 |
| Copyright terms: Public domain | W3C validator |