![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlemeqgt | GIF version |
Description: Lemma for addlocpr 7537. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeqgt | ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.du | . . 3 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
2 | addlocprlem.et | . . 3 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
3 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
4 | prop 7476 | . . . . . 6 ⊢ (𝐴 ∈ P → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P) |
6 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
7 | elprnqu 7483 | . . . . 5 ⊢ ((⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) → 𝑈 ∈ Q) | |
8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Q) |
9 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7482 | . . . . . 6 ⊢ ((⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 5, 9, 10 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
13 | addclnq 7376 | . . . . 5 ⊢ ((𝐷 ∈ Q ∧ 𝑃 ∈ Q) → (𝐷 +Q 𝑃) ∈ Q) | |
14 | 11, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐷 +Q 𝑃) ∈ Q) |
15 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
16 | prop 7476 | . . . . . 6 ⊢ (𝐵 ∈ P → ⟨(1st ‘𝐵), (2nd ‘𝐵)⟩ ∈ P) | |
17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → ⟨(1st ‘𝐵), (2nd ‘𝐵)⟩ ∈ P) |
18 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
19 | elprnqu 7483 | . . . . 5 ⊢ ((⟨(1st ‘𝐵), (2nd ‘𝐵)⟩ ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑇 ∈ Q) | |
20 | 17, 18, 19 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Q) |
21 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
22 | elprnql 7482 | . . . . . 6 ⊢ ((⟨(1st ‘𝐵), (2nd ‘𝐵)⟩ ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
23 | 17, 21, 22 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Q) |
24 | addclnq 7376 | . . . . 5 ⊢ ((𝐸 ∈ Q ∧ 𝑃 ∈ Q) → (𝐸 +Q 𝑃) ∈ Q) | |
25 | 23, 12, 24 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐸 +Q 𝑃) ∈ Q) |
26 | lt2addnq 7405 | . . . 4 ⊢ (((𝑈 ∈ Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇 ∈ Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) | |
27 | 8, 14, 20, 25, 26 | syl22anc 1239 | . . 3 ⊢ (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) |
28 | 1, 2, 27 | mp2and 433 | . 2 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))) |
29 | addcomnqg 7382 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) | |
30 | 29 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) |
31 | addassnqg 7383 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
32 | 31 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q)) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) |
33 | addclnq 7376 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) ∈ Q) | |
34 | 33 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) ∈ Q) |
35 | 11, 12, 23, 30, 32, 12, 34 | caov4d 6061 | . 2 ⊢ (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
36 | 28, 35 | breqtrd 4031 | 1 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 ‘cfv 5218 (class class class)co 5877 1st c1st 6141 2nd c2nd 6142 Qcnq 7281 +Q cplq 7283 <Q cltq 7286 Pcnp 7292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-ltnqqs 7354 df-inp 7467 |
This theorem is referenced by: addlocprlemeq 7534 addlocprlemgt 7535 |
Copyright terms: Public domain | W3C validator |