ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt GIF version

Theorem addlocprlemeqgt 7719
Description: Lemma for addlocpr 7723. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemeqgt (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))

Proof of Theorem addlocprlemeqgt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
2 addlocprlem.et . . 3 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
3 addlocprlem.a . . . . . 6 (𝜑𝐴P)
4 prop 7662 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 addlocprlem.uup . . . . 5 (𝜑𝑈 ∈ (2nd𝐴))
7 elprnqu 7669 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑈 ∈ (2nd𝐴)) → 𝑈Q)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑈Q)
9 addlocprlem.dlo . . . . . 6 (𝜑𝐷 ∈ (1st𝐴))
10 elprnql 7668 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
115, 9, 10syl2anc 411 . . . . 5 (𝜑𝐷Q)
12 addlocprlem.p . . . . 5 (𝜑𝑃Q)
13 addclnq 7562 . . . . 5 ((𝐷Q𝑃Q) → (𝐷 +Q 𝑃) ∈ Q)
1411, 12, 13syl2anc 411 . . . 4 (𝜑 → (𝐷 +Q 𝑃) ∈ Q)
15 addlocprlem.b . . . . . 6 (𝜑𝐵P)
16 prop 7662 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1715, 16syl 14 . . . . 5 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
18 addlocprlem.tup . . . . 5 (𝜑𝑇 ∈ (2nd𝐵))
19 elprnqu 7669 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑇 ∈ (2nd𝐵)) → 𝑇Q)
2017, 18, 19syl2anc 411 . . . 4 (𝜑𝑇Q)
21 addlocprlem.elo . . . . . 6 (𝜑𝐸 ∈ (1st𝐵))
22 elprnql 7668 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2317, 21, 22syl2anc 411 . . . . 5 (𝜑𝐸Q)
24 addclnq 7562 . . . . 5 ((𝐸Q𝑃Q) → (𝐸 +Q 𝑃) ∈ Q)
2523, 12, 24syl2anc 411 . . . 4 (𝜑 → (𝐸 +Q 𝑃) ∈ Q)
26 lt2addnq 7591 . . . 4 (((𝑈Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
278, 14, 20, 25, 26syl22anc 1272 . . 3 (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
281, 2, 27mp2and 433 . 2 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))
29 addcomnqg 7568 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
31 addassnqg 7569 . . . 4 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
3231adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
33 addclnq 7562 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) ∈ Q)
3433adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) ∈ Q)
3511, 12, 23, 30, 32, 12, 34caov4d 6190 . 2 (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3628, 35breqtrd 4109 1 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4083  cfv 5318  (class class class)co 6001  1st c1st 6284  2nd c2nd 6285  Qcnq 7467   +Q cplq 7469   <Q cltq 7472  Pcnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-ltnqqs 7540  df-inp 7653
This theorem is referenced by:  addlocprlemeq  7720  addlocprlemgt  7721
  Copyright terms: Public domain W3C validator