Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlocprlemeqgt | GIF version |
Description: Lemma for addlocpr 7510. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeqgt | ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.du | . . 3 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
2 | addlocprlem.et | . . 3 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
3 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
4 | prop 7449 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
6 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
7 | elprnqu 7456 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) → 𝑈 ∈ Q) | |
8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Q) |
9 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7455 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 5, 9, 10 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
13 | addclnq 7349 | . . . . 5 ⊢ ((𝐷 ∈ Q ∧ 𝑃 ∈ Q) → (𝐷 +Q 𝑃) ∈ Q) | |
14 | 11, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐷 +Q 𝑃) ∈ Q) |
15 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
16 | prop 7449 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
18 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
19 | elprnqu 7456 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑇 ∈ Q) | |
20 | 17, 18, 19 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Q) |
21 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
22 | elprnql 7455 | . . . . . 6 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
23 | 17, 21, 22 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Q) |
24 | addclnq 7349 | . . . . 5 ⊢ ((𝐸 ∈ Q ∧ 𝑃 ∈ Q) → (𝐸 +Q 𝑃) ∈ Q) | |
25 | 23, 12, 24 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐸 +Q 𝑃) ∈ Q) |
26 | lt2addnq 7378 | . . . 4 ⊢ (((𝑈 ∈ Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇 ∈ Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) | |
27 | 8, 14, 20, 25, 26 | syl22anc 1239 | . . 3 ⊢ (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) |
28 | 1, 2, 27 | mp2and 433 | . 2 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))) |
29 | addcomnqg 7355 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) | |
30 | 29 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) |
31 | addassnqg 7356 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
32 | 31 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q)) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) |
33 | addclnq 7349 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) ∈ Q) | |
34 | 33 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) ∈ Q) |
35 | 11, 12, 23, 30, 32, 12, 34 | caov4d 6049 | . 2 ⊢ (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
36 | 28, 35 | breqtrd 4024 | 1 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 〈cop 3592 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 1st c1st 6129 2nd c2nd 6130 Qcnq 7254 +Q cplq 7256 <Q cltq 7259 Pcnp 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-ltnqqs 7327 df-inp 7440 |
This theorem is referenced by: addlocprlemeq 7507 addlocprlemgt 7508 |
Copyright terms: Public domain | W3C validator |