ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt GIF version

Theorem addlocprlemeqgt 7241
Description: Lemma for addlocpr 7245. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemeqgt (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))

Proof of Theorem addlocprlemeqgt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
2 addlocprlem.et . . 3 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
3 addlocprlem.a . . . . . 6 (𝜑𝐴P)
4 prop 7184 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 addlocprlem.uup . . . . 5 (𝜑𝑈 ∈ (2nd𝐴))
7 elprnqu 7191 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑈 ∈ (2nd𝐴)) → 𝑈Q)
85, 6, 7syl2anc 406 . . . 4 (𝜑𝑈Q)
9 addlocprlem.dlo . . . . . 6 (𝜑𝐷 ∈ (1st𝐴))
10 elprnql 7190 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
115, 9, 10syl2anc 406 . . . . 5 (𝜑𝐷Q)
12 addlocprlem.p . . . . 5 (𝜑𝑃Q)
13 addclnq 7084 . . . . 5 ((𝐷Q𝑃Q) → (𝐷 +Q 𝑃) ∈ Q)
1411, 12, 13syl2anc 406 . . . 4 (𝜑 → (𝐷 +Q 𝑃) ∈ Q)
15 addlocprlem.b . . . . . 6 (𝜑𝐵P)
16 prop 7184 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1715, 16syl 14 . . . . 5 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
18 addlocprlem.tup . . . . 5 (𝜑𝑇 ∈ (2nd𝐵))
19 elprnqu 7191 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑇 ∈ (2nd𝐵)) → 𝑇Q)
2017, 18, 19syl2anc 406 . . . 4 (𝜑𝑇Q)
21 addlocprlem.elo . . . . . 6 (𝜑𝐸 ∈ (1st𝐵))
22 elprnql 7190 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2317, 21, 22syl2anc 406 . . . . 5 (𝜑𝐸Q)
24 addclnq 7084 . . . . 5 ((𝐸Q𝑃Q) → (𝐸 +Q 𝑃) ∈ Q)
2523, 12, 24syl2anc 406 . . . 4 (𝜑 → (𝐸 +Q 𝑃) ∈ Q)
26 lt2addnq 7113 . . . 4 (((𝑈Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
278, 14, 20, 25, 26syl22anc 1185 . . 3 (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
281, 2, 27mp2and 427 . 2 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))
29 addcomnqg 7090 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 273 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
31 addassnqg 7091 . . . 4 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
3231adantl 273 . . 3 ((𝜑 ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
33 addclnq 7084 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) ∈ Q)
3433adantl 273 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) ∈ Q)
3511, 12, 23, 30, 32, 12, 34caov4d 5887 . 2 (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3628, 35breqtrd 3899 1 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448  cop 3477   class class class wbr 3875  cfv 5059  (class class class)co 5706  1st c1st 5967  2nd c2nd 5968  Qcnq 6989   +Q cplq 6991   <Q cltq 6994  Pcnp 7000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-ltnqqs 7062  df-inp 7175
This theorem is referenced by:  addlocprlemeq  7242  addlocprlemgt  7243
  Copyright terms: Public domain W3C validator