Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlocprlemeqgt | GIF version |
Description: Lemma for addlocpr 7498. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeqgt | ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.du | . . 3 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
2 | addlocprlem.et | . . 3 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
3 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
4 | prop 7437 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
6 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
7 | elprnqu 7444 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) → 𝑈 ∈ Q) | |
8 | 5, 6, 7 | syl2anc 409 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Q) |
9 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7443 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 5, 9, 10 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
13 | addclnq 7337 | . . . . 5 ⊢ ((𝐷 ∈ Q ∧ 𝑃 ∈ Q) → (𝐷 +Q 𝑃) ∈ Q) | |
14 | 11, 12, 13 | syl2anc 409 | . . . 4 ⊢ (𝜑 → (𝐷 +Q 𝑃) ∈ Q) |
15 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
16 | prop 7437 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
18 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
19 | elprnqu 7444 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑇 ∈ Q) | |
20 | 17, 18, 19 | syl2anc 409 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Q) |
21 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
22 | elprnql 7443 | . . . . . 6 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
23 | 17, 21, 22 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Q) |
24 | addclnq 7337 | . . . . 5 ⊢ ((𝐸 ∈ Q ∧ 𝑃 ∈ Q) → (𝐸 +Q 𝑃) ∈ Q) | |
25 | 23, 12, 24 | syl2anc 409 | . . . 4 ⊢ (𝜑 → (𝐸 +Q 𝑃) ∈ Q) |
26 | lt2addnq 7366 | . . . 4 ⊢ (((𝑈 ∈ Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇 ∈ Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) | |
27 | 8, 14, 20, 25, 26 | syl22anc 1234 | . . 3 ⊢ (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) |
28 | 1, 2, 27 | mp2and 431 | . 2 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))) |
29 | addcomnqg 7343 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) | |
30 | 29 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) |
31 | addassnqg 7344 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
32 | 31 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q)) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) |
33 | addclnq 7337 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) ∈ Q) | |
34 | 33 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) ∈ Q) |
35 | 11, 12, 23, 30, 32, 12, 34 | caov4d 6037 | . 2 ⊢ (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
36 | 28, 35 | breqtrd 4015 | 1 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 +Q cplq 7244 <Q cltq 7247 Pcnp 7253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-ltnqqs 7315 df-inp 7428 |
This theorem is referenced by: addlocprlemeq 7495 addlocprlemgt 7496 |
Copyright terms: Public domain | W3C validator |