ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt GIF version

Theorem addlocprlemeqgt 7506
Description: Lemma for addlocpr 7510. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemeqgt (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))

Proof of Theorem addlocprlemeqgt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
2 addlocprlem.et . . 3 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
3 addlocprlem.a . . . . . 6 (𝜑𝐴P)
4 prop 7449 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 addlocprlem.uup . . . . 5 (𝜑𝑈 ∈ (2nd𝐴))
7 elprnqu 7456 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑈 ∈ (2nd𝐴)) → 𝑈Q)
85, 6, 7syl2anc 411 . . . 4 (𝜑𝑈Q)
9 addlocprlem.dlo . . . . . 6 (𝜑𝐷 ∈ (1st𝐴))
10 elprnql 7455 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
115, 9, 10syl2anc 411 . . . . 5 (𝜑𝐷Q)
12 addlocprlem.p . . . . 5 (𝜑𝑃Q)
13 addclnq 7349 . . . . 5 ((𝐷Q𝑃Q) → (𝐷 +Q 𝑃) ∈ Q)
1411, 12, 13syl2anc 411 . . . 4 (𝜑 → (𝐷 +Q 𝑃) ∈ Q)
15 addlocprlem.b . . . . . 6 (𝜑𝐵P)
16 prop 7449 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1715, 16syl 14 . . . . 5 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
18 addlocprlem.tup . . . . 5 (𝜑𝑇 ∈ (2nd𝐵))
19 elprnqu 7456 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑇 ∈ (2nd𝐵)) → 𝑇Q)
2017, 18, 19syl2anc 411 . . . 4 (𝜑𝑇Q)
21 addlocprlem.elo . . . . . 6 (𝜑𝐸 ∈ (1st𝐵))
22 elprnql 7455 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2317, 21, 22syl2anc 411 . . . . 5 (𝜑𝐸Q)
24 addclnq 7349 . . . . 5 ((𝐸Q𝑃Q) → (𝐸 +Q 𝑃) ∈ Q)
2523, 12, 24syl2anc 411 . . . 4 (𝜑 → (𝐸 +Q 𝑃) ∈ Q)
26 lt2addnq 7378 . . . 4 (((𝑈Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
278, 14, 20, 25, 26syl22anc 1239 . . 3 (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
281, 2, 27mp2and 433 . 2 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))
29 addcomnqg 7355 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
31 addassnqg 7356 . . . 4 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
3231adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
33 addclnq 7349 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) ∈ Q)
3433adantl 277 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) ∈ Q)
3511, 12, 23, 30, 32, 12, 34caov4d 6049 . 2 (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3628, 35breqtrd 4024 1 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  cop 3592   class class class wbr 3998  cfv 5208  (class class class)co 5865  1st c1st 6129  2nd c2nd 6130  Qcnq 7254   +Q cplq 7256   <Q cltq 7259  Pcnp 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-ltnqqs 7327  df-inp 7440
This theorem is referenced by:  addlocprlemeq  7507  addlocprlemgt  7508
  Copyright terms: Public domain W3C validator