![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlemeqgt | GIF version |
Description: Lemma for addlocpr 7598. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemeqgt | ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.du | . . 3 ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) | |
2 | addlocprlem.et | . . 3 ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) | |
3 | addlocprlem.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ P) | |
4 | prop 7537 | . . . . . 6 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
6 | addlocprlem.uup | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) | |
7 | elprnqu 7544 | . . . . 5 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑈 ∈ (2nd ‘𝐴)) → 𝑈 ∈ Q) | |
8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ Q) |
9 | addlocprlem.dlo | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
10 | elprnql 7543 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) → 𝐷 ∈ Q) | |
11 | 5, 9, 10 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Q) |
12 | addlocprlem.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Q) | |
13 | addclnq 7437 | . . . . 5 ⊢ ((𝐷 ∈ Q ∧ 𝑃 ∈ Q) → (𝐷 +Q 𝑃) ∈ Q) | |
14 | 11, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐷 +Q 𝑃) ∈ Q) |
15 | addlocprlem.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ P) | |
16 | prop 7537 | . . . . . 6 ⊢ (𝐵 ∈ P → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) | |
17 | 15, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P) |
18 | addlocprlem.tup | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) | |
19 | elprnqu 7544 | . . . . 5 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑇 ∈ (2nd ‘𝐵)) → 𝑇 ∈ Q) | |
20 | 17, 18, 19 | syl2anc 411 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ Q) |
21 | addlocprlem.elo | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
22 | elprnql 7543 | . . . . . 6 ⊢ ((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵)) → 𝐸 ∈ Q) | |
23 | 17, 21, 22 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Q) |
24 | addclnq 7437 | . . . . 5 ⊢ ((𝐸 ∈ Q ∧ 𝑃 ∈ Q) → (𝐸 +Q 𝑃) ∈ Q) | |
25 | 23, 12, 24 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝐸 +Q 𝑃) ∈ Q) |
26 | lt2addnq 7466 | . . . 4 ⊢ (((𝑈 ∈ Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇 ∈ Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) | |
27 | 8, 14, 20, 25, 26 | syl22anc 1250 | . . 3 ⊢ (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))) |
28 | 1, 2, 27 | mp2and 433 | . 2 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))) |
29 | addcomnqg 7443 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) | |
30 | 29 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓)) |
31 | addassnqg 7444 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) | |
32 | 31 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q ∧ ℎ ∈ Q)) → ((𝑓 +Q 𝑔) +Q ℎ) = (𝑓 +Q (𝑔 +Q ℎ))) |
33 | addclnq 7437 | . . . 4 ⊢ ((𝑓 ∈ Q ∧ 𝑔 ∈ Q) → (𝑓 +Q 𝑔) ∈ Q) | |
34 | 33 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ (𝑓 ∈ Q ∧ 𝑔 ∈ Q)) → (𝑓 +Q 𝑔) ∈ Q) |
35 | 11, 12, 23, 30, 32, 12, 34 | caov4d 6105 | . 2 ⊢ (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
36 | 28, 35 | breqtrd 4056 | 1 ⊢ (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 〈cop 3622 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 +Q cplq 7344 <Q cltq 7347 Pcnp 7353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-ltnqqs 7415 df-inp 7528 |
This theorem is referenced by: addlocprlemeq 7595 addlocprlemgt 7596 |
Copyright terms: Public domain | W3C validator |