| Step | Hyp | Ref
| Expression |
| 1 | | oveq12 5931 |
. 2
⊢ (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))) |
| 2 | | nnmcl 6539 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝐹 ∈ ω) → (𝐴 ·o 𝐹) ∈
ω) |
| 3 | | mulpiord 7384 |
. . . . . . . . 9
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·N 𝐺) = (𝐵 ·o 𝐺)) |
| 4 | | mulclpi 7395 |
. . . . . . . . 9
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·N 𝐺) ∈ N) |
| 5 | 3, 4 | eqeltrrd 2274 |
. . . . . . . 8
⊢ ((𝐵 ∈ N ∧
𝐺 ∈ N)
→ (𝐵
·o 𝐺)
∈ N) |
| 6 | 2, 5 | anim12i 338 |
. . . . . . 7
⊢ (((𝐴 ∈ ω ∧ 𝐹 ∈ ω) ∧ (𝐵 ∈ N ∧
𝐺 ∈ N))
→ ((𝐴
·o 𝐹)
∈ ω ∧ (𝐵
·o 𝐺)
∈ N)) |
| 7 | 6 | an4s 588 |
. . . . . 6
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐹 ∈ ω ∧
𝐺 ∈ N))
→ ((𝐴
·o 𝐹)
∈ ω ∧ (𝐵
·o 𝐺)
∈ N)) |
| 8 | | nnmcl 6539 |
. . . . . . . 8
⊢ ((𝐶 ∈ ω ∧ 𝑅 ∈ ω) → (𝐶 ·o 𝑅) ∈
ω) |
| 9 | | mulpiord 7384 |
. . . . . . . . 9
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·N 𝑆) = (𝐷 ·o 𝑆)) |
| 10 | | mulclpi 7395 |
. . . . . . . . 9
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·N 𝑆) ∈ N) |
| 11 | 9, 10 | eqeltrrd 2274 |
. . . . . . . 8
⊢ ((𝐷 ∈ N ∧
𝑆 ∈ N)
→ (𝐷
·o 𝑆)
∈ N) |
| 12 | 8, 11 | anim12i 338 |
. . . . . . 7
⊢ (((𝐶 ∈ ω ∧ 𝑅 ∈ ω) ∧ (𝐷 ∈ N ∧
𝑆 ∈ N))
→ ((𝐶
·o 𝑅)
∈ ω ∧ (𝐷
·o 𝑆)
∈ N)) |
| 13 | 12 | an4s 588 |
. . . . . 6
⊢ (((𝐶 ∈ ω ∧ 𝐷 ∈ N) ∧
(𝑅 ∈ ω ∧
𝑆 ∈ N))
→ ((𝐶
·o 𝑅)
∈ ω ∧ (𝐷
·o 𝑆)
∈ N)) |
| 14 | 7, 13 | anim12i 338 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐹 ∈ ω ∧
𝐺 ∈ N))
∧ ((𝐶 ∈ ω
∧ 𝐷 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈
N))) |
| 15 | 14 | an4s 588 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈
N))) |
| 16 | | enq0breq 7503 |
. . . 4
⊢ ((((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧
((𝐶 ·o
𝑅) ∈ ω ∧
(𝐷 ·o
𝑆) ∈ N))
→ (〈(𝐴
·o 𝐹),
(𝐵 ·o
𝐺)〉
~Q0 〈(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)〉 ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)))) |
| 17 | 15, 16 | syl 14 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0
〈(𝐶
·o 𝑅),
(𝐷 ·o
𝑆)〉 ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)))) |
| 18 | | simplll 533 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐴 ∈ ω) |
| 19 | | simprll 537 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐹 ∈ ω) |
| 20 | | simplrr 536 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐷 ∈ N) |
| 21 | | pinn 7376 |
. . . . . 6
⊢ (𝐷 ∈ N →
𝐷 ∈
ω) |
| 22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐷 ∈ ω) |
| 23 | | nnmcom 6547 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥)) |
| 24 | 23 | adantl 277 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω)) →
(𝑥 ·o
𝑦) = (𝑦 ·o 𝑥)) |
| 25 | | nnmass 6545 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧))) |
| 26 | 25 | adantl 277 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω ∧
𝑧 ∈ ω)) →
((𝑥 ·o
𝑦) ·o
𝑧) = (𝑥 ·o (𝑦 ·o 𝑧))) |
| 27 | | simprrr 540 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑆 ∈ N) |
| 28 | | pinn 7376 |
. . . . . 6
⊢ (𝑆 ∈ N →
𝑆 ∈
ω) |
| 29 | 27, 28 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑆 ∈ ω) |
| 30 | | nnmcl 6539 |
. . . . . 6
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) ∈
ω) |
| 31 | 30 | adantl 277 |
. . . . 5
⊢
(((((𝐴 ∈
ω ∧ 𝐵 ∈
N) ∧ (𝐶
∈ ω ∧ 𝐷
∈ N)) ∧ ((𝐹 ∈ ω ∧ 𝐺 ∈ N) ∧ (𝑅 ∈ ω ∧ 𝑆 ∈ N))) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ ω)) →
(𝑥 ·o
𝑦) ∈
ω) |
| 32 | 18, 19, 22, 24, 26, 29, 31 | caov4d 6108 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆))) |
| 33 | | simpllr 534 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐵 ∈ N) |
| 34 | | pinn 7376 |
. . . . . 6
⊢ (𝐵 ∈ N →
𝐵 ∈
ω) |
| 35 | 33, 34 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐵 ∈ ω) |
| 36 | | simprlr 538 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐺 ∈ N) |
| 37 | | pinn 7376 |
. . . . . 6
⊢ (𝐺 ∈ N →
𝐺 ∈
ω) |
| 38 | 36, 37 | syl 14 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐺 ∈ ω) |
| 39 | | simplrl 535 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝐶 ∈ ω) |
| 40 | | simprrl 539 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → 𝑅 ∈ ω) |
| 41 | 35, 38, 39, 24, 26, 40, 31 | caov4d 6108 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))) |
| 42 | 32, 41 | eqeq12d 2211 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))) |
| 43 | 17, 42 | bitrd 188 |
. 2
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0
〈(𝐶
·o 𝑅),
(𝐷 ·o
𝑆)〉 ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))) |
| 44 | 1, 43 | imbitrrid 156 |
1
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ N) ∧
(𝐶 ∈ ω ∧
𝐷 ∈ N))
∧ ((𝐹 ∈ ω
∧ 𝐺 ∈
N) ∧ (𝑅
∈ ω ∧ 𝑆
∈ N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → 〈(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)〉 ~Q0
〈(𝐶
·o 𝑅),
(𝐷 ·o
𝑆)〉)) |