ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq0 GIF version

Theorem mulcmpblnq0 7406
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
Assertion
Ref Expression
mulcmpblnq0 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))

Proof of Theorem mulcmpblnq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5862 . 2 (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))
2 nnmcl 6460 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐹 ∈ ω) → (𝐴 ·o 𝐹) ∈ ω)
3 mulpiord 7279 . . . . . . . . 9 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) = (𝐵 ·o 𝐺))
4 mulclpi 7290 . . . . . . . . 9 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
53, 4eqeltrrd 2248 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·o 𝐺) ∈ N)
62, 5anim12i 336 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐹 ∈ ω) ∧ (𝐵N𝐺N)) → ((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N))
76an4s 583 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) → ((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N))
8 nnmcl 6460 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝑅 ∈ ω) → (𝐶 ·o 𝑅) ∈ ω)
9 mulpiord 7279 . . . . . . . . 9 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) = (𝐷 ·o 𝑆))
10 mulclpi 7290 . . . . . . . . 9 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
119, 10eqeltrrd 2248 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·o 𝑆) ∈ N)
128, 11anim12i 336 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝑅 ∈ ω) ∧ (𝐷N𝑆N)) → ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N))
1312an4s 583 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N)) → ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N))
147, 13anim12i 336 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) ∧ ((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)))
1514an4s 583 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)))
16 enq0breq 7398 . . . 4 ((((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅))))
1715, 16syl 14 . . 3 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅))))
18 simplll 528 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐴 ∈ ω)
19 simprll 532 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐹 ∈ ω)
20 simplrr 531 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷N)
21 pinn 7271 . . . . . 6 (𝐷N𝐷 ∈ ω)
2220, 21syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷 ∈ ω)
23 nnmcom 6468 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
2423adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
25 nnmass 6466 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
2625adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
27 simprrr 535 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆N)
28 pinn 7271 . . . . . 6 (𝑆N𝑆 ∈ ω)
2927, 28syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆 ∈ ω)
30 nnmcl 6460 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) ∈ ω)
3130adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) ∈ ω)
3218, 19, 22, 24, 26, 29, 31caov4d 6037 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)))
33 simpllr 529 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵N)
34 pinn 7271 . . . . . 6 (𝐵N𝐵 ∈ ω)
3533, 34syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵 ∈ ω)
36 simprlr 533 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺N)
37 pinn 7271 . . . . . 6 (𝐺N𝐺 ∈ ω)
3836, 37syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺 ∈ ω)
39 simplrl 530 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐶 ∈ ω)
40 simprrl 534 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑅 ∈ ω)
4135, 38, 39, 24, 26, 40, 31caov4d 6037 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))
4232, 41eqeq12d 2185 . . 3 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))))
4317, 42bitrd 187 . 2 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))))
441, 43syl5ibr 155 1 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  ωcom 4574  (class class class)co 5853   ·o comu 6393  Ncnpi 7234   ·N cmi 7236   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-mi 7268  df-enq0 7386
This theorem is referenced by:  mulnq0mo  7410
  Copyright terms: Public domain W3C validator