ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq0 GIF version

Theorem mulcmpblnq0 7343
Description: Lemma showing compatibility of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 20-Nov-2019.)
Assertion
Ref Expression
mulcmpblnq0 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))

Proof of Theorem mulcmpblnq0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5823 . 2 (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))
2 nnmcl 6417 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐹 ∈ ω) → (𝐴 ·o 𝐹) ∈ ω)
3 mulpiord 7216 . . . . . . . . 9 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) = (𝐵 ·o 𝐺))
4 mulclpi 7227 . . . . . . . . 9 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
53, 4eqeltrrd 2232 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·o 𝐺) ∈ N)
62, 5anim12i 336 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐹 ∈ ω) ∧ (𝐵N𝐺N)) → ((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N))
76an4s 578 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) → ((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N))
8 nnmcl 6417 . . . . . . . 8 ((𝐶 ∈ ω ∧ 𝑅 ∈ ω) → (𝐶 ·o 𝑅) ∈ ω)
9 mulpiord 7216 . . . . . . . . 9 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) = (𝐷 ·o 𝑆))
10 mulclpi 7227 . . . . . . . . 9 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
119, 10eqeltrrd 2232 . . . . . . . 8 ((𝐷N𝑆N) → (𝐷 ·o 𝑆) ∈ N)
128, 11anim12i 336 . . . . . . 7 (((𝐶 ∈ ω ∧ 𝑅 ∈ ω) ∧ (𝐷N𝑆N)) → ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N))
1312an4s 578 . . . . . 6 (((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N)) → ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N))
147, 13anim12i 336 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐹 ∈ ω ∧ 𝐺N)) ∧ ((𝐶 ∈ ω ∧ 𝐷N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)))
1514an4s 578 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)))
16 enq0breq 7335 . . . 4 ((((𝐴 ·o 𝐹) ∈ ω ∧ (𝐵 ·o 𝐺) ∈ N) ∧ ((𝐶 ·o 𝑅) ∈ ω ∧ (𝐷 ·o 𝑆) ∈ N)) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅))))
1715, 16syl 14 . . 3 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅))))
18 simplll 523 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐴 ∈ ω)
19 simprll 527 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐹 ∈ ω)
20 simplrr 526 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷N)
21 pinn 7208 . . . . . 6 (𝐷N𝐷 ∈ ω)
2220, 21syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐷 ∈ ω)
23 nnmcom 6425 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
2423adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) = (𝑦 ·o 𝑥))
25 nnmass 6423 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
2625adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑥 ·o 𝑦) ·o 𝑧) = (𝑥 ·o (𝑦 ·o 𝑧)))
27 simprrr 530 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆N)
28 pinn 7208 . . . . . 6 (𝑆N𝑆 ∈ ω)
2927, 28syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑆 ∈ ω)
30 nnmcl 6417 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ·o 𝑦) ∈ ω)
3130adantl 275 . . . . 5 (((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ·o 𝑦) ∈ ω)
3218, 19, 22, 24, 26, 29, 31caov4d 5995 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)))
33 simpllr 524 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵N)
34 pinn 7208 . . . . . 6 (𝐵N𝐵 ∈ ω)
3533, 34syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐵 ∈ ω)
36 simprlr 528 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺N)
37 pinn 7208 . . . . . 6 (𝐺N𝐺 ∈ ω)
3836, 37syl 14 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐺 ∈ ω)
39 simplrl 525 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝐶 ∈ ω)
40 simprrl 529 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → 𝑅 ∈ ω)
4135, 38, 39, 24, 26, 40, 31caov4d 5995 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅)))
4232, 41eqeq12d 2169 . . 3 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐹) ·o (𝐷 ·o 𝑆)) = ((𝐵 ·o 𝐺) ·o (𝐶 ·o 𝑅)) ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))))
4317, 42bitrd 187 . 2 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩ ↔ ((𝐴 ·o 𝐷) ·o (𝐹 ·o 𝑆)) = ((𝐵 ·o 𝐶) ·o (𝐺 ·o 𝑅))))
441, 43syl5ibr 155 1 ((((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) ∧ ((𝐹 ∈ ω ∧ 𝐺N) ∧ (𝑅 ∈ ω ∧ 𝑆N))) → (((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ∧ (𝐹 ·o 𝑆) = (𝐺 ·o 𝑅)) → ⟨(𝐴 ·o 𝐹), (𝐵 ·o 𝐺)⟩ ~Q0 ⟨(𝐶 ·o 𝑅), (𝐷 ·o 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 2125  cop 3559   class class class wbr 3961  ωcom 4543  (class class class)co 5814   ·o comu 6351  Ncnpi 7171   ·N cmi 7173   ~Q0 ceq0 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-oadd 6357  df-omul 6358  df-ni 7203  df-mi 7205  df-enq0 7323
This theorem is referenced by:  mulnq0mo  7347
  Copyright terms: Public domain W3C validator