ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss GIF version

Theorem seq3clss 10423
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n (𝜑𝑁 ∈ (ℤ𝑀))
seq3clss.ft ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
seq3clss.fs ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seq3clss.scl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3clss.t (𝜑𝑆𝑇)
seq3clss.tcl ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
Assertion
Ref Expression
seq3clss (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3clss
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9988 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5496 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
54eleq1d 2239 . . . 4 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆))
65imbi2d 229 . . 3 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆)))
7 fveq2 5496 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘))
87eleq1d 2239 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆))
98imbi2d 229 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆)))
10 fveq2 5496 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
1110eleq1d 2239 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆))
1211imbi2d 229 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
13 fveq2 5496 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
1413eleq1d 2239 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆))
1514imbi2d 229 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)))
16 eluzel2 9492 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
171, 16syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
18 seq3clss.ft . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
19 seq3clss.tcl . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
2017, 18, 19seq3-1 10416 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
21 fveq2 5496 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2221eleq1d 2239 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
23 seq3clss.fs . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
2423ralrimiva 2543 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
25 eluzfz1 9987 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
261, 25syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
2722, 24, 26rspcdva 2839 . . . . 5 (𝜑 → (𝐹𝑀) ∈ 𝑆)
2820, 27eqeltrd 2247 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆)
2928a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆))
30 elfzouz 10107 . . . . . . . . 9 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
3130ad2antlr 486 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → 𝑘 ∈ (ℤ𝑀))
3218adantlr 474 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
3332adantlr 474 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
3419adantlr 474 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
3534adantlr 474 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
3631, 33, 35seq3p1 10418 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
37 seq3clss.scl . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3837adantlr 474 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3938adantlr 474 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
40 simpr 109 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆)
41 fveq2 5496 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
4241eleq1d 2239 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
4324ad2antrr 485 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
44 fzofzp1 10183 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
4544ad2antlr 486 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝑘 + 1) ∈ (𝑀...𝑁))
4642, 43, 45rspcdva 2839 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
4739, 40, 46caovcld 6006 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) ∈ 𝑆)
4836, 47eqeltrd 2247 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)
4948ex 114 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆))
5049expcom 115 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
5150a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
526, 9, 12, 15, 29, 51fzind2 10195 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆))
533, 52mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wss 3121  cfv 5198  (class class class)co 5853  1c1 7775   + caddc 7777  cz 9212  cuz 9487  ...cfz 9965  ..^cfzo 10098  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  fsumcl2lem  11361
  Copyright terms: Public domain W3C validator