ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3clss GIF version

Theorem seq3clss 10542
Description: Closure property of the recursive sequence builder. (Contributed by Jim Kingdon, 28-Sep-2022.)
Hypotheses
Ref Expression
seq3clss.n (𝜑𝑁 ∈ (ℤ𝑀))
seq3clss.ft ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
seq3clss.fs ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seq3clss.scl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3clss.t (𝜑𝑆𝑇)
seq3clss.tcl ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
Assertion
Ref Expression
seq3clss (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3clss
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3clss.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10098 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5554 . . . . 5 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑀))
54eleq1d 2262 . . . 4 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆))
65imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆)))
7 fveq2 5554 . . . . 5 (𝑤 = 𝑘 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑘))
87eleq1d 2262 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆))
98imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆)))
10 fveq2 5554 . . . . 5 (𝑤 = (𝑘 + 1) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘(𝑘 + 1)))
1110eleq1d 2262 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆))
1211imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
13 fveq2 5554 . . . . 5 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝑀( + , 𝐹)‘𝑁))
1413eleq1d 2262 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆 ↔ (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆))
1514imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) ∈ 𝑆) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)))
16 eluzel2 9597 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
171, 16syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
18 seq3clss.ft . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
19 seq3clss.tcl . . . . . 6 ((𝜑 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
2017, 18, 19seq3-1 10533 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
21 fveq2 5554 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2221eleq1d 2262 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
23 seq3clss.fs . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
2423ralrimiva 2567 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
25 eluzfz1 10097 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
261, 25syl 14 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
2722, 24, 26rspcdva 2869 . . . . 5 (𝜑 → (𝐹𝑀) ∈ 𝑆)
2820, 27eqeltrd 2270 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆)
2928a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) ∈ 𝑆))
30 elfzouz 10217 . . . . . . . . 9 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ𝑀))
3130ad2antlr 489 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → 𝑘 ∈ (ℤ𝑀))
3218adantlr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
3332adantlr 477 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑇)
3419adantlr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
3534adantlr 477 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) ∈ 𝑇)
3631, 33, 35seq3p1 10536 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
37 seq3clss.scl . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3837adantlr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3938adantlr 477 . . . . . . . 8 ((((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
40 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆)
41 fveq2 5554 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
4241eleq1d 2262 . . . . . . . . 9 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
4324ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → ∀𝑥 ∈ (𝑀...𝑁)(𝐹𝑥) ∈ 𝑆)
44 fzofzp1 10294 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
4544ad2antlr 489 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝑘 + 1) ∈ (𝑀...𝑁))
4642, 43, 45rspcdva 2869 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
4739, 40, 46caovcld 6072 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) ∈ 𝑆)
4836, 47eqeltrd 2270 . . . . . 6 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)
4948ex 115 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆))
5049expcom 116 . . . 4 (𝑘 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
5150a2d 26 . . 3 (𝑘 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝑆) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) ∈ 𝑆)))
526, 9, 12, 15, 29, 51fzind2 10306 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆))
533, 52mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  wss 3153  cfv 5254  (class class class)co 5918  1c1 7873   + caddc 7875  cz 9317  cuz 9592  ...cfz 10074  ..^cfzo 10208  seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by:  seqclg  10543  seqfeq4g  10602  fsumcl2lem  11541  gsumwsubmcl  13068  gsumfzcl  13071
  Copyright terms: Public domain W3C validator