ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lelttrd GIF version

Theorem lelttrd 7705
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.)
Hypotheses
Ref Expression
ltd.1 (𝜑𝐴 ∈ ℝ)
ltd.2 (𝜑𝐵 ∈ ℝ)
letrd.3 (𝜑𝐶 ∈ ℝ)
lelttrd.4 (𝜑𝐴𝐵)
lelttrd.5 (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
lelttrd (𝜑𝐴 < 𝐶)

Proof of Theorem lelttrd
StepHypRef Expression
1 lelttrd.4 . 2 (𝜑𝐴𝐵)
2 lelttrd.5 . 2 (𝜑𝐵 < 𝐶)
3 ltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 letrd.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 lelttr 7670 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
73, 4, 5, 6syl3anc 1181 . 2 (𝜑 → ((𝐴𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
81, 2, 7mp2and 425 1 (𝜑𝐴 < 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1445   class class class wbr 3867  cr 7446   < clt 7619  cle 7620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-pre-ltwlin 7555
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-cnv 4475  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625
This theorem is referenced by:  lt2msq1  8443  ledivp1  8461  suprzclex  8943  btwnapz  8975  ge0p1rp  9264  elfzolt3  9717  exbtwnz  9811  btwnzge0  9856  flltdivnn0lt  9860  modqid  9905  mulqaddmodid  9920  modqsubdir  9949  nn0opthlem2d  10244  bcp1nk  10285  zfz1isolemiso  10359  resqrexlemover  10558  resqrexlemnm  10566  resqrexlemcvg  10567  resqrexlemglsq  10570  resqrexlemga  10571  abslt  10636  abs3lem  10659  fzomaxdiflem  10660  icodiamlt  10728  maxltsup  10766  reccn2ap  10856  expcnvre  11046  absltap  11052  cvgratnnlemfm  11072  cvgratnnlemrate  11073  mertenslemi1  11078  ef01bndlem  11196  sin01bnd  11197  cos01bnd  11198  eirraplem  11213  dvdslelemd  11271  sqrt2irrap  11585  ssblex  12217  qdencn  12620
  Copyright terms: Public domain W3C validator