Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttrd | GIF version |
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | lelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lelttr 7965 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1220 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 430 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2128 class class class wbr 3965 ℝcr 7731 < clt 7912 ≤ cle 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-pre-ltwlin 7845 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4592 df-cnv 4594 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 |
This theorem is referenced by: lt2msq1 8756 ledivp1 8774 suprzclex 9262 btwnapz 9294 ge0p1rp 9592 elfzolt3 10056 exbtwnz 10150 btwnzge0 10199 flltdivnn0lt 10203 modqid 10248 mulqaddmodid 10263 modqsubdir 10292 nn0opthlem2d 10595 bcp1nk 10636 zfz1isolemiso 10710 resqrexlemover 10910 resqrexlemnm 10918 resqrexlemcvg 10919 resqrexlemglsq 10922 resqrexlemga 10923 abslt 10988 abs3lem 11011 fzomaxdiflem 11012 icodiamlt 11080 maxltsup 11118 reccn2ap 11210 expcnvre 11400 absltap 11406 cvgratnnlemfm 11426 cvgratnnlemrate 11427 mertenslemi1 11432 ef01bndlem 11653 sin01bnd 11654 cos01bnd 11655 eirraplem 11673 dvdslelemd 11734 sqrt2irrap 12054 eulerthlemrprm 12103 eulerthlema 12104 ssblex 12831 dedekindeulemuub 12995 dedekindeulemlu 12999 suplociccreex 13002 dedekindicclemuub 13004 dedekindicclemlu 13008 dedekindicc 13011 ivthinclemuopn 13016 dveflem 13087 coseq00topi 13156 coseq0negpitopi 13157 cosordlem 13170 logbgcd1irraplemexp 13285 qdencn 13598 cvgcmp2nlemabs 13603 |
Copyright terms: Public domain | W3C validator |