![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lelttrd | GIF version |
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | lelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lelttr 8048 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1238 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 433 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 class class class wbr 4005 ℝcr 7812 < clt 7994 ≤ cle 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-pre-ltwlin 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-cnv 4636 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 |
This theorem is referenced by: lt2msq1 8844 ledivp1 8862 suprzclex 9353 btwnapz 9385 ge0p1rp 9687 elfzolt3 10159 exbtwnz 10253 btwnzge0 10302 flltdivnn0lt 10306 modqid 10351 mulqaddmodid 10366 modqsubdir 10395 nn0opthlem2d 10703 bcp1nk 10744 zfz1isolemiso 10821 resqrexlemover 11021 resqrexlemnm 11029 resqrexlemcvg 11030 resqrexlemglsq 11033 resqrexlemga 11034 abslt 11099 abs3lem 11122 fzomaxdiflem 11123 icodiamlt 11191 maxltsup 11229 reccn2ap 11323 expcnvre 11513 absltap 11519 cvgratnnlemfm 11539 cvgratnnlemrate 11540 mertenslemi1 11545 ef01bndlem 11766 sin01bnd 11767 cos01bnd 11768 eirraplem 11786 dvdslelemd 11851 isprm5lem 12143 sqrt2irrap 12182 eulerthlemrprm 12231 eulerthlema 12232 pcfaclem 12349 pockthg 12357 ssblex 13970 dedekindeulemuub 14134 dedekindeulemlu 14138 suplociccreex 14141 dedekindicclemuub 14143 dedekindicclemlu 14147 dedekindicc 14150 ivthinclemuopn 14155 dveflem 14226 coseq00topi 14295 coseq0negpitopi 14296 cosordlem 14309 logbgcd1irraplemexp 14425 lgsdirprm 14474 2sqlem8 14509 qdencn 14814 cvgcmp2nlemabs 14819 |
Copyright terms: Public domain | W3C validator |