Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttrd | GIF version |
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
letrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lelttrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
lelttrd.5 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
lelttrd | ⊢ (𝜑 → 𝐴 < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | lelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 < 𝐶) | |
3 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | letrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lelttr 7987 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1228 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) |
8 | 1, 2, 7 | mp2and 430 | 1 ⊢ (𝜑 → 𝐴 < 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 < clt 7933 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: lt2msq1 8780 ledivp1 8798 suprzclex 9289 btwnapz 9321 ge0p1rp 9621 elfzolt3 10092 exbtwnz 10186 btwnzge0 10235 flltdivnn0lt 10239 modqid 10284 mulqaddmodid 10299 modqsubdir 10328 nn0opthlem2d 10634 bcp1nk 10675 zfz1isolemiso 10752 resqrexlemover 10952 resqrexlemnm 10960 resqrexlemcvg 10961 resqrexlemglsq 10964 resqrexlemga 10965 abslt 11030 abs3lem 11053 fzomaxdiflem 11054 icodiamlt 11122 maxltsup 11160 reccn2ap 11254 expcnvre 11444 absltap 11450 cvgratnnlemfm 11470 cvgratnnlemrate 11471 mertenslemi1 11476 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 eirraplem 11717 dvdslelemd 11781 isprm5lem 12073 sqrt2irrap 12112 eulerthlemrprm 12161 eulerthlema 12162 pcfaclem 12279 pockthg 12287 ssblex 13071 dedekindeulemuub 13235 dedekindeulemlu 13239 suplociccreex 13242 dedekindicclemuub 13244 dedekindicclemlu 13248 dedekindicc 13251 ivthinclemuopn 13256 dveflem 13327 coseq00topi 13396 coseq0negpitopi 13397 cosordlem 13410 logbgcd1irraplemexp 13526 lgsdirprm 13575 2sqlem8 13599 qdencn 13906 cvgcmp2nlemabs 13911 |
Copyright terms: Public domain | W3C validator |