ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djulf1o GIF version

Theorem djulf1o 6830
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djulf1o inl:V–1-1-onto→({∅} × V)

Proof of Theorem djulf1o
StepHypRef Expression
1 0ex 3987 . 2 ∅ ∈ V
2 df-inl 6819 . 2 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
31, 2djuf1olem 6825 1 inl:V–1-1-onto→({∅} × V)
Colors of variables: wff set class
Syntax hints:  Vcvv 2633  c0 3302  {csn 3466   × cxp 4465  1-1-ontowf1o 5048  inlcinl 6817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1st 5949  df-2nd 5950  df-inl 6819
This theorem is referenced by:  djuin  6836  djuun  6840  casefun  6856  caseinl  6862  dju1p1e2  6920
  Copyright terms: Public domain W3C validator