![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzoaddel | GIF version |
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
fzoaddel | ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10211 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ) |
3 | 2 | zred 9439 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℝ) |
4 | elfzoelz 10213 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | |
5 | 4 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ) |
6 | 5 | zred 9439 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℝ) |
7 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
8 | 7 | zred 9439 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℝ) |
9 | elfzole1 10222 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐴) | |
10 | 9 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ≤ 𝐴) |
11 | 3, 6, 8, 10 | leadd1dd 8578 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐵 + 𝐷) ≤ (𝐴 + 𝐷)) |
12 | elfzoel2 10212 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
13 | 12 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ) |
14 | 13 | zred 9439 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℝ) |
15 | elfzolt2 10223 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶) | |
16 | 15 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶) |
17 | 6, 14, 8, 16 | ltadd1dd 8575 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) < (𝐶 + 𝐷)) |
18 | zaddcl 9357 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ℤ) | |
19 | 4, 18 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ℤ) |
20 | zaddcl 9357 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐵 + 𝐷) ∈ ℤ) | |
21 | 1, 20 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐵 + 𝐷) ∈ ℤ) |
22 | zaddcl 9357 | . . . 4 ⊢ ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶 + 𝐷) ∈ ℤ) | |
23 | 12, 22 | sylan 283 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐶 + 𝐷) ∈ ℤ) |
24 | elfzo 10215 | . . 3 ⊢ (((𝐴 + 𝐷) ∈ ℤ ∧ (𝐵 + 𝐷) ∈ ℤ ∧ (𝐶 + 𝐷) ∈ ℤ) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷)) ↔ ((𝐵 + 𝐷) ≤ (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) | |
25 | 19, 21, 23, 24 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷)) ↔ ((𝐵 + 𝐷) ≤ (𝐴 + 𝐷) ∧ (𝐴 + 𝐷) < (𝐶 + 𝐷)))) |
26 | 11, 17, 25 | mpbir2and 946 | 1 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + 𝐷) ∈ ((𝐵 + 𝐷)..^(𝐶 + 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 + caddc 7875 < clt 8054 ≤ cle 8055 ℤcz 9317 ..^cfzo 10208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-fzo 10209 |
This theorem is referenced by: fzoaddel2 10260 fzosubel 10261 fzofzp1 10294 fzostep1 10304 |
Copyright terms: Public domain | W3C validator |