![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzocongeq | GIF version |
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzocongeq | ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel2 9810 | . . . . . 6 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ) | |
2 | elfzoel1 9809 | . . . . . 6 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ) | |
3 | 1, 2 | zsubcld 9076 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → (𝐷 − 𝐶) ∈ ℤ) |
4 | 3 | adantl 273 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷 − 𝐶) ∈ ℤ) |
5 | elfzoelz 9811 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ) | |
6 | elfzoelz 9811 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ) | |
7 | zsubcl 8993 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) ∈ ℤ) | |
8 | 5, 6, 7 | syl2an 285 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℤ) |
9 | dvdsabsb 11354 | . . . 4 ⊢ (((𝐷 − 𝐶) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) | |
10 | 4, 8, 9 | syl2anc 406 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)))) |
11 | fzomaxdif 10771 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶))) | |
12 | fzo0dvdseq 11397 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐵)) ∈ (0..^(𝐷 − 𝐶)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (abs‘(𝐴 − 𝐵)) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
14 | 10, 13 | bitrd 187 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ (abs‘(𝐴 − 𝐵)) = 0)) |
15 | 5 | zcnd 9072 | . . . . 5 ⊢ (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ) |
16 | 6 | zcnd 9072 | . . . . 5 ⊢ (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ) |
17 | subcl 7878 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
18 | 15, 16, 17 | syl2an 285 | . . . 4 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴 − 𝐵) ∈ ℂ) |
19 | 18 | abs00ad 10723 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ (𝐴 − 𝐵) = 0)) |
20 | subeq0 7905 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
21 | 15, 16, 20 | syl2an 285 | . . 3 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) |
22 | 19, 21 | bitrd 187 | . 2 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴 − 𝐵)) = 0 ↔ 𝐴 = 𝐵)) |
23 | 14, 22 | bitrd 187 | 1 ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 ‘cfv 5079 (class class class)co 5726 ℂcc 7539 0cc0 7541 − cmin 7850 ℤcz 8952 ..^cfzo 9806 abscabs 10655 ∥ cdvds 11335 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 ax-arch 7658 ax-caucvg 7659 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-n0 8876 df-z 8953 df-uz 9223 df-q 9308 df-rp 9338 df-fz 9678 df-fzo 9807 df-seqfrec 10106 df-exp 10180 df-cj 10501 df-re 10502 df-im 10503 df-rsqrt 10656 df-abs 10657 df-dvds 11336 |
This theorem is referenced by: addmodlteqALT 11399 |
Copyright terms: Public domain | W3C validator |