ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzocongeq GIF version

Theorem fzocongeq 12023
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzocongeq ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem fzocongeq
StepHypRef Expression
1 elfzoel2 10221 . . . . . 6 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
2 elfzoel1 10220 . . . . . 6 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
31, 2zsubcld 9453 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → (𝐷𝐶) ∈ ℤ)
43adantl 277 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
5 elfzoelz 10222 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
6 elfzoelz 10222 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
7 zsubcl 9367 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
85, 6, 7syl2an 289 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℤ)
9 dvdsabsb 11975 . . . 4 (((𝐷𝐶) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
104, 8, 9syl2anc 411 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
11 fzomaxdif 11278 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
12 fzo0dvdseq 12022 . . . 4 ((abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1311, 12syl 14 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1410, 13bitrd 188 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (abs‘(𝐴𝐵)) = 0))
155zcnd 9449 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ)
166zcnd 9449 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ)
17 subcl 8225 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1815, 16, 17syl2an 289 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℂ)
1918abs00ad 11230 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ (𝐴𝐵) = 0))
20 subeq0 8252 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2115, 16, 20syl2an 289 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2219, 21bitrd 188 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ 𝐴 = 𝐵))
2314, 22bitrd 188 1 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  cmin 8197  cz 9326  ..^cfzo 10217  abscabs 11162  cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953
This theorem is referenced by:  addmodlteqALT  12024
  Copyright terms: Public domain W3C validator