ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzocongeq GIF version

Theorem fzocongeq 11796
Description: Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzocongeq ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem fzocongeq
StepHypRef Expression
1 elfzoel2 10081 . . . . . 6 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
2 elfzoel1 10080 . . . . . 6 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
31, 2zsubcld 9318 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → (𝐷𝐶) ∈ ℤ)
43adantl 275 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
5 elfzoelz 10082 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
6 elfzoelz 10082 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
7 zsubcl 9232 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
85, 6, 7syl2an 287 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℤ)
9 dvdsabsb 11750 . . . 4 (((𝐷𝐶) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
104, 8, 9syl2anc 409 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (𝐷𝐶) ∥ (abs‘(𝐴𝐵))))
11 fzomaxdif 11055 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)))
12 fzo0dvdseq 11795 . . . 4 ((abs‘(𝐴𝐵)) ∈ (0..^(𝐷𝐶)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1311, 12syl 14 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (abs‘(𝐴𝐵)) ↔ (abs‘(𝐴𝐵)) = 0))
1410, 13bitrd 187 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ (abs‘(𝐴𝐵)) = 0))
155zcnd 9314 . . . . 5 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℂ)
166zcnd 9314 . . . . 5 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℂ)
17 subcl 8097 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
1815, 16, 17syl2an 287 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐴𝐵) ∈ ℂ)
1918abs00ad 11007 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ (𝐴𝐵) = 0))
20 subeq0 8124 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2115, 16, 20syl2an 287 . . 3 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵))
2219, 21bitrd 187 . 2 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((abs‘(𝐴𝐵)) = 0 ↔ 𝐴 = 𝐵))
2314, 22bitrd 187 1 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷𝐶) ∥ (𝐴𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  cmin 8069  cz 9191  ..^cfzo 10077  abscabs 10939  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by:  addmodlteqALT  11797
  Copyright terms: Public domain W3C validator