ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzomaxdiflem GIF version

Theorem fzomaxdiflem 11296
Description: Lemma for fzomaxdif 11297. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 10241 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
21adantl 277 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℤ)
3 elfzoelz 10241 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
43adantr 276 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℤ)
52, 4zsubcld 9472 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℤ)
65zred 9467 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℝ)
76adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
82zred 9467 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℝ)
94zred 9467 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℝ)
108, 9subge0d 8581 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (0 ≤ (𝐵𝐴) ↔ 𝐴𝐵))
1110biimpar 297 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → 0 ≤ (𝐵𝐴))
12 absid 11255 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 ≤ (𝐵𝐴)) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
137, 11, 12syl2anc 411 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
14 elfzoel1 10239 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
1514adantl 277 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℤ)
1615zred 9467 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℝ)
178, 16resubcld 8426 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) ∈ ℝ)
18 elfzoel2 10240 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
1918adantl 277 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℤ)
2019, 15zsubcld 9472 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
2120zred 9467 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℝ)
22 elfzole1 10250 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐶𝐴)
2322adantr 276 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶𝐴)
2416, 9, 8, 23lesub2dd 8608 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ≤ (𝐵𝐶))
2519zred 9467 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℝ)
26 elfzolt2 10251 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 < 𝐷)
2726adantl 277 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 < 𝐷)
288, 25, 16, 27ltsub1dd 8603 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) < (𝐷𝐶))
296, 17, 21, 24, 28lelttrd 8170 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) < (𝐷𝐶))
3029adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) < (𝐷𝐶))
31 0zd 9357 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 0 ∈ ℤ)
32 elfzo 10243 . . . . 5 (((𝐵𝐴) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐷𝐶) ∈ ℤ) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
335, 31, 20, 32syl3anc 1249 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3433adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3511, 30, 34mpbir2and 946 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (0..^(𝐷𝐶)))
3613, 35eqeltrd 2273 1 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cr 7897  0cc0 7898   < clt 8080  cle 8081  cmin 8216  cz 9345  ..^cfzo 10236  abscabs 11181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183
This theorem is referenced by:  fzomaxdif  11297
  Copyright terms: Public domain W3C validator