ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzomaxdiflem GIF version

Theorem fzomaxdiflem 11259
Description: Lemma for fzomaxdif 11260. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 10216 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 ∈ ℤ)
21adantl 277 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℤ)
3 elfzoelz 10216 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐴 ∈ ℤ)
43adantr 276 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℤ)
52, 4zsubcld 9447 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℤ)
65zred 9442 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ∈ ℝ)
76adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
82zred 9442 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 ∈ ℝ)
94zred 9442 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐴 ∈ ℝ)
108, 9subge0d 8556 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (0 ≤ (𝐵𝐴) ↔ 𝐴𝐵))
1110biimpar 297 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → 0 ≤ (𝐵𝐴))
12 absid 11218 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 ≤ (𝐵𝐴)) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
137, 11, 12syl2anc 411 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) = (𝐵𝐴))
14 elfzoel1 10214 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐶 ∈ ℤ)
1514adantl 277 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℤ)
1615zred 9442 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶 ∈ ℝ)
178, 16resubcld 8402 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) ∈ ℝ)
18 elfzoel2 10215 . . . . . . . 8 (𝐵 ∈ (𝐶..^𝐷) → 𝐷 ∈ ℤ)
1918adantl 277 . . . . . . 7 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℤ)
2019, 15zsubcld 9447 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℤ)
2120zred 9442 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐷𝐶) ∈ ℝ)
22 elfzole1 10225 . . . . . . 7 (𝐴 ∈ (𝐶..^𝐷) → 𝐶𝐴)
2322adantr 276 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐶𝐴)
2416, 9, 8, 23lesub2dd 8583 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) ≤ (𝐵𝐶))
2519zred 9442 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐷 ∈ ℝ)
26 elfzolt2 10226 . . . . . . 7 (𝐵 ∈ (𝐶..^𝐷) → 𝐵 < 𝐷)
2726adantl 277 . . . . . 6 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 𝐵 < 𝐷)
288, 25, 16, 27ltsub1dd 8578 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐶) < (𝐷𝐶))
296, 17, 21, 24, 28lelttrd 8146 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → (𝐵𝐴) < (𝐷𝐶))
3029adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) < (𝐷𝐶))
31 0zd 9332 . . . . 5 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → 0 ∈ ℤ)
32 elfzo 10218 . . . . 5 (((𝐵𝐴) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐷𝐶) ∈ ℤ) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
335, 31, 20, 32syl3anc 1249 . . . 4 ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3433adantr 276 . . 3 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → ((𝐵𝐴) ∈ (0..^(𝐷𝐶)) ↔ (0 ≤ (𝐵𝐴) ∧ (𝐵𝐴) < (𝐷𝐶))))
3511, 30, 34mpbir2and 946 . 2 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ (0..^(𝐷𝐶)))
3613, 35eqeltrd 2270 1 (((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) ∧ 𝐴𝐵) → (abs‘(𝐵𝐴)) ∈ (0..^(𝐷𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cr 7873  0cc0 7874   < clt 8056  cle 8057  cmin 8192  cz 9320  ..^cfzo 10211  abscabs 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  fzomaxdif  11260
  Copyright terms: Public domain W3C validator