ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaen GIF version

Theorem f1imaen 6944
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by NM, 30-Sep-2004.)
Hypothesis
Ref Expression
f1imaen.1 𝐶 ∈ V
Assertion
Ref Expression
f1imaen ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)

Proof of Theorem f1imaen
StepHypRef Expression
1 f1imaen.1 . 2 𝐶 ∈ V
2 f1imaeng 6942 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴𝐶 ∈ V) → (𝐹𝐶) ≈ 𝐶)
31, 2mp3an3 1360 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) ≈ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  Vcvv 2799  wss 3197   class class class wbr 4082  cima 4721  1-1wf1 5314  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-er 6678  df-en 6886
This theorem is referenced by:  ssenen  7008
  Copyright terms: Public domain W3C validator