| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en0 | GIF version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6865 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅) | |
| 2 | f1ocnv 5561 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
| 3 | f1o00 5584 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 275 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 6 | 5 | exlimiv 1624 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 7 | 1, 6 | sylbi 121 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
| 8 | 0ex 4190 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | 8 | enref 6886 | . . 3 ⊢ ∅ ≈ ∅ |
| 10 | breq1 4065 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
| 12 | 7, 11 | impbii 126 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1375 ∃wex 1518 ∅c0 3471 class class class wbr 4062 ◡ccnv 4695 –1-1-onto→wf1o 5293 ≈ cen 6855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-en 6858 |
| This theorem is referenced by: nneneq 6986 php5 6987 snnen2oprc 6989 php5dom 6992 ssfilem 7005 dif1enen 7010 fin0 7015 fin0or 7016 diffitest 7017 findcard 7018 findcard2 7019 findcard2s 7020 diffisn 7023 fiintim 7061 fisseneq 7064 fihasheq0 10982 zfz1iso 11030 |
| Copyright terms: Public domain | W3C validator |