![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en0 | GIF version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6774 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅) | |
2 | f1ocnv 5493 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
3 | f1o00 5515 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 275 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
6 | 5 | exlimiv 1609 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
7 | 1, 6 | sylbi 121 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
8 | 0ex 4145 | . . . 4 ⊢ ∅ ∈ V | |
9 | 8 | enref 6792 | . . 3 ⊢ ∅ ≈ ∅ |
10 | breq1 4021 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
12 | 7, 11 | impbii 126 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∃wex 1503 ∅c0 3437 class class class wbr 4018 ◡ccnv 4643 –1-1-onto→wf1o 5234 ≈ cen 6765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-en 6768 |
This theorem is referenced by: nneneq 6886 php5 6887 snnen2oprc 6889 php5dom 6892 ssfilem 6904 dif1enen 6909 fin0 6914 fin0or 6915 diffitest 6916 findcard 6917 findcard2 6918 findcard2s 6919 diffisn 6922 fiintim 6958 fisseneq 6961 fihasheq0 10808 zfz1iso 10856 |
Copyright terms: Public domain | W3C validator |