![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > en0 | GIF version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 6747 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅) | |
2 | f1ocnv 5475 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
3 | f1o00 5497 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 275 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
6 | 5 | exlimiv 1598 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
7 | 1, 6 | sylbi 121 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
8 | 0ex 4131 | . . . 4 ⊢ ∅ ∈ V | |
9 | 8 | enref 6765 | . . 3 ⊢ ∅ ≈ ∅ |
10 | breq1 4007 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
12 | 7, 11 | impbii 126 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1353 ∃wex 1492 ∅c0 3423 class class class wbr 4004 ◡ccnv 4626 –1-1-onto→wf1o 5216 ≈ cen 6738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-en 6741 |
This theorem is referenced by: nneneq 6857 php5 6858 snnen2oprc 6860 php5dom 6863 ssfilem 6875 dif1enen 6880 fin0 6885 fin0or 6886 diffitest 6887 findcard 6888 findcard2 6889 findcard2s 6890 diffisn 6893 fiintim 6928 fisseneq 6931 fihasheq0 10773 zfz1iso 10821 |
Copyright terms: Public domain | W3C validator |