| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > en0 | GIF version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren 6903 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅) | |
| 2 | f1ocnv 5587 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
| 3 | f1o00 5610 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simprbi 275 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 6 | 5 | exlimiv 1644 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 7 | 1, 6 | sylbi 121 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
| 8 | 0ex 4211 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | 8 | enref 6924 | . . 3 ⊢ ∅ ≈ ∅ |
| 10 | breq1 4086 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 11 | 9, 10 | mpbiri 168 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
| 12 | 7, 11 | impbii 126 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∃wex 1538 ∅c0 3491 class class class wbr 4083 ◡ccnv 4718 –1-1-onto→wf1o 5317 ≈ cen 6893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-en 6896 |
| This theorem is referenced by: nneneq 7026 php5 7027 snnen2oprc 7029 php5dom 7032 ssfilem 7045 dif1enen 7050 fin0 7055 fin0or 7056 diffitest 7057 findcard 7058 findcard2 7059 findcard2s 7060 diffisn 7063 fiintim 7101 fisseneq 7104 fihasheq0 11023 zfz1iso 11071 |
| Copyright terms: Public domain | W3C validator |