ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 GIF version

Theorem f1ocnvfv2 5746
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5459 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
21fveq1d 5488 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
32adantr 274 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
4 f1ocnv 5445 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
5 f1of 5432 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
7 fvco3 5557 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
86, 7sylan 281 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
9 fvresi 5678 . . 3 (𝐶𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶)
109adantl 275 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶)
113, 8, 103eqtr3d 2206 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   I cid 4266  ccnv 4603  cres 4606  ccom 4608  wf 5184  1-1-ontowf1o 5187  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  f1ocnvfvb  5748  isocnv  5779  f1oiso2  5795  ordiso2  7000  enomnilem  7102  enmkvlem  7125  enwomnilem  7133  frecuzrdglem  10346  frecuzrdgsuc  10349  frecuzrdgdomlem  10352  frecuzrdgsuctlem  10358  frecfzennn  10361  iseqf1olemkle  10419  iseqf1olemklt  10420  iseqf1olemnab  10423  seq3f1olemqsumkj  10433  hashfz1  10696  seq3coll  10755  summodclem3  11321  summodclem2a  11322  prodmodclem3  11516  prodmodclem2a  11517  sqpweven  12107  2sqpwodd  12108  phimullem  12157  eulerthlemth  12164  ennnfonelemkh  12345  ennnfonelemhf1o  12346  ennnfonelemex  12347  ennnfonelemnn0  12355  ctinfomlemom  12360  ctiunctlemfo  12372  reeflog  13424  isomninnlem  13909  iswomninnlem  13928  ismkvnnlem  13931
  Copyright terms: Public domain W3C validator