![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | GIF version |
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ococnv2 5489 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
2 | 1 | fveq1d 5518 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
3 | 2 | adantr 276 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
4 | f1ocnv 5475 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
5 | f1of 5462 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
7 | fvco3 5588 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
8 | 6, 7 | sylan 283 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
9 | fvresi 5710 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
10 | 9 | adantl 277 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
11 | 3, 8, 10 | 3eqtr3d 2218 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 I cid 4289 ◡ccnv 4626 ↾ cres 4629 ∘ ccom 4631 ⟶wf 5213 –1-1-onto→wf1o 5216 ‘cfv 5217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-sbc 2964 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-opab 4066 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 |
This theorem is referenced by: f1ocnvfvb 5781 isocnv 5812 f1oiso2 5828 ordiso2 7034 enomnilem 7136 enmkvlem 7159 enwomnilem 7167 frecuzrdglem 10411 frecuzrdgsuc 10414 frecuzrdgdomlem 10417 frecuzrdgsuctlem 10423 frecfzennn 10426 iseqf1olemkle 10484 iseqf1olemklt 10485 iseqf1olemnab 10488 seq3f1olemqsumkj 10498 hashfz1 10763 seq3coll 10822 summodclem3 11388 summodclem2a 11389 prodmodclem3 11583 prodmodclem2a 11584 sqpweven 12175 2sqpwodd 12176 phimullem 12225 eulerthlemth 12232 ennnfonelemkh 12413 ennnfonelemhf1o 12414 ennnfonelemex 12415 ennnfonelemnn0 12423 ctinfomlemom 12428 ctiunctlemfo 12440 mhmf1o 12861 reeflog 14287 isomninnlem 14781 iswomninnlem 14800 ismkvnnlem 14803 |
Copyright terms: Public domain | W3C validator |