ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 GIF version

Theorem f1ocnvfv2 5846
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5548 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
21fveq1d 5577 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
32adantr 276 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
4 f1ocnv 5534 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
5 f1of 5521 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
7 fvco3 5649 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
86, 7sylan 283 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
9 fvresi 5776 . . 3 (𝐶𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶)
109adantl 277 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶)
113, 8, 103eqtr3d 2245 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   I cid 4334  ccnv 4673  cres 4676  ccom 4678  wf 5266  1-1-ontowf1o 5269  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by:  f1ocnvfvb  5848  isocnv  5879  f1oiso2  5895  ordiso2  7136  enomnilem  7239  enmkvlem  7262  enwomnilem  7270  frecuzrdglem  10554  frecuzrdgsuc  10557  frecuzrdgdomlem  10560  frecuzrdgsuctlem  10566  frecfzennn  10569  iseqf1olemkle  10640  iseqf1olemklt  10641  iseqf1olemnab  10644  seq3f1olemqsumkj  10654  seqf1oglem1  10662  seqf1oglem2  10663  hashfz1  10926  seq3coll  10985  summodclem3  11633  summodclem2a  11634  prodmodclem3  11828  prodmodclem2a  11829  nninfctlemfo  12303  sqpweven  12439  2sqpwodd  12440  phimullem  12489  eulerthlemth  12496  ennnfonelemkh  12725  ennnfonelemhf1o  12726  ennnfonelemex  12727  ennnfonelemnn0  12735  ctinfomlemom  12740  ctiunctlemfo  12752  mhmf1o  13244  ghmf1o  13553  gsumfzreidx  13615  reeflog  15277  isomninnlem  15902  iswomninnlem  15921  ismkvnnlem  15924
  Copyright terms: Public domain W3C validator