| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | GIF version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5543 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
| 2 | 1 | fveq1d 5572 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 4 | f1ocnv 5529 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 5 | f1of 5516 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 7 | fvco3 5644 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
| 8 | 6, 7 | sylan 283 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
| 9 | fvresi 5767 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
| 11 | 3, 8, 10 | 3eqtr3d 2245 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 I cid 4333 ◡ccnv 4672 ↾ cres 4675 ∘ ccom 4677 ⟶wf 5264 –1-1-onto→wf1o 5267 ‘cfv 5268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 |
| This theorem is referenced by: f1ocnvfvb 5839 isocnv 5870 f1oiso2 5886 ordiso2 7119 enomnilem 7222 enmkvlem 7245 enwomnilem 7253 frecuzrdglem 10537 frecuzrdgsuc 10540 frecuzrdgdomlem 10543 frecuzrdgsuctlem 10549 frecfzennn 10552 iseqf1olemkle 10623 iseqf1olemklt 10624 iseqf1olemnab 10627 seq3f1olemqsumkj 10637 seqf1oglem1 10645 seqf1oglem2 10646 hashfz1 10909 seq3coll 10968 summodclem3 11610 summodclem2a 11611 prodmodclem3 11805 prodmodclem2a 11806 nninfctlemfo 12280 sqpweven 12416 2sqpwodd 12417 phimullem 12466 eulerthlemth 12473 ennnfonelemkh 12702 ennnfonelemhf1o 12703 ennnfonelemex 12704 ennnfonelemnn0 12712 ctinfomlemom 12717 ctiunctlemfo 12729 mhmf1o 13220 ghmf1o 13529 gsumfzreidx 13591 reeflog 15253 isomninnlem 15833 iswomninnlem 15852 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |