| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ocnvfv2 | GIF version | ||
| Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfv2 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ococnv2 5534 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐵)) | |
| 2 | 1 | fveq1d 5563 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 3 | 2 | adantr 276 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶)) |
| 4 | f1ocnv 5520 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 5 | f1of 5507 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 7 | fvco3 5635 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) | |
| 8 | 6, 7 | sylan 283 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ((𝐹 ∘ ◡𝐹)‘𝐶) = (𝐹‘(◡𝐹‘𝐶))) |
| 9 | fvresi 5758 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶) | |
| 10 | 9 | adantl 277 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶) |
| 11 | 3, 8, 10 | 3eqtr3d 2237 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐶)) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 I cid 4324 ◡ccnv 4663 ↾ cres 4666 ∘ ccom 4668 ⟶wf 5255 –1-1-onto→wf1o 5258 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: f1ocnvfvb 5830 isocnv 5861 f1oiso2 5877 ordiso2 7110 enomnilem 7213 enmkvlem 7236 enwomnilem 7244 frecuzrdglem 10522 frecuzrdgsuc 10525 frecuzrdgdomlem 10528 frecuzrdgsuctlem 10534 frecfzennn 10537 iseqf1olemkle 10608 iseqf1olemklt 10609 iseqf1olemnab 10612 seq3f1olemqsumkj 10622 seqf1oglem1 10630 seqf1oglem2 10631 hashfz1 10894 seq3coll 10953 summodclem3 11564 summodclem2a 11565 prodmodclem3 11759 prodmodclem2a 11760 nninfctlemfo 12234 sqpweven 12370 2sqpwodd 12371 phimullem 12420 eulerthlemth 12427 ennnfonelemkh 12656 ennnfonelemhf1o 12657 ennnfonelemex 12658 ennnfonelemnn0 12666 ctinfomlemom 12671 ctiunctlemfo 12683 mhmf1o 13174 ghmf1o 13483 gsumfzreidx 13545 reeflog 15207 isomninnlem 15787 iswomninnlem 15806 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |