ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 GIF version

Theorem f1ocnvfv2 5679
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5394 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
21fveq1d 5423 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
32adantr 274 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
4 f1ocnv 5380 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
5 f1of 5367 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
7 fvco3 5492 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
86, 7sylan 281 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
9 fvresi 5613 . . 3 (𝐶𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶)
109adantl 275 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶)
113, 8, 103eqtr3d 2180 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   I cid 4210  ccnv 4538  cres 4541  ccom 4543  wf 5119  1-1-ontowf1o 5122  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  f1ocnvfvb  5681  isocnv  5712  f1oiso2  5728  ordiso2  6920  enomnilem  7010  frecuzrdglem  10196  frecuzrdgsuc  10199  frecuzrdgdomlem  10202  frecuzrdgsuctlem  10208  frecfzennn  10211  iseqf1olemkle  10269  iseqf1olemklt  10270  iseqf1olemnab  10273  seq3f1olemqsumkj  10283  hashfz1  10541  seq3coll  10597  summodclem3  11161  summodclem2a  11162  prodmodclem3  11356  prodmodclem2a  11357  sqpweven  11864  2sqpwodd  11865  phimullem  11912  ennnfonelemkh  11936  ennnfonelemhf1o  11937  ennnfonelemex  11938  ennnfonelemnn0  11946  ctinfomlemom  11951  ctiunctlemfo  11963  reeflog  12964  isomninnlem  13286
  Copyright terms: Public domain W3C validator