ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvfv2 GIF version

Theorem f1ocnvfv2 5901
Description: The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfv2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)

Proof of Theorem f1ocnvfv2
StepHypRef Expression
1 f1ococnv2 5598 . . . 4 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝐹) = ( I ↾ 𝐵))
21fveq1d 5628 . . 3 (𝐹:𝐴1-1-onto𝐵 → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
32adantr 276 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (( I ↾ 𝐵)‘𝐶))
4 f1ocnv 5584 . . . 4 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
5 f1of 5571 . . . 4 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
64, 5syl 14 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
7 fvco3 5704 . . 3 ((𝐹:𝐵𝐴𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
86, 7sylan 283 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → ((𝐹𝐹)‘𝐶) = (𝐹‘(𝐹𝐶)))
9 fvresi 5831 . . 3 (𝐶𝐵 → (( I ↾ 𝐵)‘𝐶) = 𝐶)
109adantl 277 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (( I ↾ 𝐵)‘𝐶) = 𝐶)
113, 8, 103eqtr3d 2270 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   I cid 4378  ccnv 4717  cres 4720  ccom 4722  wf 5313  1-1-ontowf1o 5316  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325
This theorem is referenced by:  f1ocnvfvb  5903  isocnv  5934  f1oiso2  5950  ordiso2  7198  enomnilem  7301  enmkvlem  7324  enwomnilem  7332  frecuzrdglem  10628  frecuzrdgsuc  10631  frecuzrdgdomlem  10634  frecuzrdgsuctlem  10640  frecfzennn  10643  iseqf1olemkle  10714  iseqf1olemklt  10715  iseqf1olemnab  10718  seq3f1olemqsumkj  10728  seqf1oglem1  10736  seqf1oglem2  10737  hashfz1  11000  seq3coll  11059  summodclem3  11886  summodclem2a  11887  prodmodclem3  12081  prodmodclem2a  12082  nninfctlemfo  12556  sqpweven  12692  2sqpwodd  12693  phimullem  12742  eulerthlemth  12749  ennnfonelemkh  12978  ennnfonelemhf1o  12979  ennnfonelemex  12980  ennnfonelemnn0  12988  ctinfomlemom  12993  ctiunctlemfo  13005  mhmf1o  13498  ghmf1o  13807  gsumfzreidx  13869  reeflog  15531  isomninnlem  16357  iswomninnlem  16376  ismkvnnlem  16379
  Copyright terms: Public domain W3C validator