ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arith2 GIF version

Theorem 1arith2 12735
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith2 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Distinct variable groups:   𝑒,𝑔,𝑛,𝑝,𝑧   𝑒,𝑀,𝑔   𝑅,𝑔,𝑛
Allowed substitution hints:   𝑅(𝑧,𝑒,𝑝)   𝑀(𝑧,𝑛,𝑝)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
2 1arith.2 . . . . . 6 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
31, 21arith 12734 . . . . 5 𝑀:ℕ–1-1-onto𝑅
4 f1ocnv 5542 . . . . 5 (𝑀:ℕ–1-1-onto𝑅𝑀:𝑅1-1-onto→ℕ)
53, 4ax-mp 5 . . . 4 𝑀:𝑅1-1-onto→ℕ
6 f1ofveu 5939 . . . 4 ((𝑀:𝑅1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
75, 6mpan 424 . . 3 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
8 f1ocnvfvb 5856 . . . . 5 ((𝑀:ℕ–1-1-onto𝑅𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
93, 8mp3an1 1337 . . . 4 ((𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
109reubidva 2690 . . 3 (𝑧 ∈ ℕ → (∃!𝑔𝑅 (𝑀𝑧) = 𝑔 ↔ ∃!𝑔𝑅 (𝑀𝑔) = 𝑧))
117, 10mpbird 167 . 2 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑧) = 𝑔)
1211rgen 2560 1 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  wral 2485  ∃!wreu 2487  {crab 2489  cmpt 4109  ccnv 4678  cima 4682  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  Fincfn 6834  cn 9043  0cn0 9302  cprime 12473   pCnt cpc 12651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-map 6744  df-en 6835  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-xnn0 9366  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-prm 12474  df-pc 12652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator