ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arith2 GIF version

Theorem 1arith2 12320
Description: Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
1arith.2 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
Assertion
Ref Expression
1arith2 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Distinct variable groups:   𝑒,𝑔,𝑛,𝑝,𝑧   𝑒,𝑀,𝑔   𝑅,𝑔,𝑛
Allowed substitution hints:   𝑅(𝑧,𝑒,𝑝)   𝑀(𝑧,𝑛,𝑝)

Proof of Theorem 1arith2
StepHypRef Expression
1 1arith.1 . . . . . 6 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
2 1arith.2 . . . . . 6 𝑅 = {𝑒 ∈ (ℕ0𝑚 ℙ) ∣ (𝑒 “ ℕ) ∈ Fin}
31, 21arith 12319 . . . . 5 𝑀:ℕ–1-1-onto𝑅
4 f1ocnv 5455 . . . . 5 (𝑀:ℕ–1-1-onto𝑅𝑀:𝑅1-1-onto→ℕ)
53, 4ax-mp 5 . . . 4 𝑀:𝑅1-1-onto→ℕ
6 f1ofveu 5841 . . . 4 ((𝑀:𝑅1-1-onto→ℕ ∧ 𝑧 ∈ ℕ) → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
75, 6mpan 422 . . 3 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑔) = 𝑧)
8 f1ocnvfvb 5759 . . . . 5 ((𝑀:ℕ–1-1-onto𝑅𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
93, 8mp3an1 1319 . . . 4 ((𝑧 ∈ ℕ ∧ 𝑔𝑅) → ((𝑀𝑧) = 𝑔 ↔ (𝑀𝑔) = 𝑧))
109reubidva 2652 . . 3 (𝑧 ∈ ℕ → (∃!𝑔𝑅 (𝑀𝑧) = 𝑔 ↔ ∃!𝑔𝑅 (𝑀𝑔) = 𝑧))
117, 10mpbird 166 . 2 (𝑧 ∈ ℕ → ∃!𝑔𝑅 (𝑀𝑧) = 𝑔)
1211rgen 2523 1 𝑧 ∈ ℕ ∃!𝑔𝑅 (𝑀𝑧) = 𝑔
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141  wral 2448  ∃!wreu 2450  {crab 2452  cmpt 4050  ccnv 4610  cima 4614  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  𝑚 cmap 6626  Fincfn 6718  cn 8878  0cn0 9135  cprime 12061   pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-map 6628  df-en 6719  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator