ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3z GIF version

Theorem seq3z 10511
Description: If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
seq3homo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3homo.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqz.3 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
seqz.4 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
seqz.5 (𝜑𝐾 ∈ (𝑀...𝑁))
seqz.7 (𝜑 → (𝐹𝐾) = 𝑍)
Assertion
Ref Expression
seq3z (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦

Proof of Theorem seq3z
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqz.5 . . 3 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz3 10022 . . 3 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (ℤ𝐾))
4 fveqeq2 5525 . . . 4 (𝑤 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
54imbi2d 230 . . 3 (𝑤 = 𝐾 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)))
6 fveqeq2 5525 . . . 4 (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍))
76imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍)))
8 fveqeq2 5525 . . . 4 (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))
98imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)))
10 fveqeq2 5525 . . . 4 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑁) = 𝑍))
1110imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)))
12 elfzuz 10021 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
131, 12syl 14 . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ𝑀))
14 eluzelz 9537 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
1513, 14syl 14 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
16 simpr 110 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝐾))
1713adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
18 uztrn 9544 . . . . . . . . . 10 ((𝑥 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
1916, 17, 18syl2anc 411 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝐾)) → 𝑥 ∈ (ℤ𝑀))
20 seq3homo.2 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2119, 20syldan 282 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
22 seq3homo.1 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2315, 21, 22seq3-1 10460 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
24 seqz.7 . . . . . . 7 (𝜑 → (𝐹𝐾) = 𝑍)
2523, 24eqtrd 2210 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = 𝑍)
26 seqeq1 10448 . . . . . . . 8 (𝐾 = 𝑀 → seq𝐾( + , 𝐹) = seq𝑀( + , 𝐹))
2726fveq1d 5518 . . . . . . 7 (𝐾 = 𝑀 → (seq𝐾( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
2827eqeq1d 2186 . . . . . 6 (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
2925, 28syl5ibcom 155 . . . . 5 (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
30 eluzel2 9533 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3113, 30syl 14 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
3231adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
33 simpr 110 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → 𝐾 ∈ (ℤ‘(𝑀 + 1)))
3420adantlr 477 . . . . . . . 8 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3522adantlr 477 . . . . . . . 8 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3632, 33, 34, 35seq3m1 10468 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
3724adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝐾) = 𝑍)
3837oveq2d 5891 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
39 oveq1 5882 . . . . . . . . 9 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
4039eqeq1d 2186 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍))
41 seqz.4 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
4241ralrimiva 2550 . . . . . . . . 9 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
4342adantr 276 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
44 eqid 2177 . . . . . . . . . 10 (ℤ𝑀) = (ℤ𝑀)
4544, 32, 34, 35seqf 10461 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
46 eluzp1m1 9551 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
4731, 46sylan 283 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
4845, 47ffvelcdmd 5653 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆)
4940, 43, 48rspcdva 2847 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍)
5036, 38, 493eqtrd 2214 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5150ex 115 . . . . 5 (𝜑 → (𝐾 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
52 uzp1 9561 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5313, 52syl 14 . . . . 5 (𝜑 → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5429, 51, 53mpjaod 718 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5554a1i 9 . . 3 (𝐾 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
56 simpr 110 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ (ℤ𝐾))
5713adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
58 uztrn 9544 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
5956, 57, 58syl2anc 411 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → 𝑘 ∈ (ℤ𝑀))
6020adantlr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6122adantlr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6259, 60, 61seq3p1 10462 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
6362adantr 276 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))))
64 simpr 110 . . . . . . . 8 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍)
6564oveq1d 5890 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + (𝐹‘(𝑘 + 1))))
66 oveq2 5883 . . . . . . . . . 10 (𝑥 = (𝐹‘(𝑘 + 1)) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘(𝑘 + 1))))
6766eqeq1d 2186 . . . . . . . . 9 (𝑥 = (𝐹‘(𝑘 + 1)) → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍))
68 seqz.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
6968ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
7069adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
71 fveq2 5516 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
7271eleq1d 2246 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆))
7320ralrimiva 2550 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
7473adantr 276 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
75 peano2uz 9583 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘 + 1) ∈ (ℤ𝑀))
7659, 75syl 14 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑘 + 1) ∈ (ℤ𝑀))
7772, 74, 76rspcdva 2847 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆)
7867, 70, 77rspcdva 2847 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)
7978adantr 276 . . . . . . 7 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)
8063, 65, 793eqtrd 2214 . . . . . 6 (((𝜑𝑘 ∈ (ℤ𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)
8180ex 115 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))
8281expcom 116 . . . 4 (𝑘 ∈ (ℤ𝐾) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)))
8382a2d 26 . . 3 (𝑘 ∈ (ℤ𝐾) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)))
845, 7, 9, 11, 55, 83uzind4 9588 . 2 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍))
853, 84mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wral 2455  cfv 5217  (class class class)co 5875  1c1 7812   + caddc 7814  cmin 8128  cz 9253  cuz 9528  ...cfz 10008  seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009  df-seqfrec 10446
This theorem is referenced by:  bcval5  10743  lgsne0  14442
  Copyright terms: Public domain W3C validator