| Step | Hyp | Ref
| Expression |
| 1 | | seqz.5 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 2 | | elfzuz3 10097 |
. . 3
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 4 | | fveqeq2 5567 |
. . . 4
⊢ (𝑤 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)) |
| 5 | 4 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝐾 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))) |
| 6 | | fveqeq2 5567 |
. . . 4
⊢ (𝑤 = 𝑘 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍)) |
| 7 | 6 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍))) |
| 8 | | fveqeq2 5567 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)) |
| 9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
| 10 | | fveqeq2 5567 |
. . . 4
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑤) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)) |
| 11 | 10 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑤) = 𝑍) ↔ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍))) |
| 12 | | elfzuz 10096 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 13 | 1, 12 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 14 | | eluzelz 9610 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 16 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝐾)) |
| 17 | 13 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 18 | | uztrn 9618 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 19 | 16, 17, 18 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 20 | | seq3homo.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 21 | 19, 20 | syldan 282 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
| 22 | | seq3homo.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 23 | 15, 21, 22 | seq3-1 10554 |
. . . . . . 7
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹‘𝐾)) |
| 24 | | seqz.7 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐾) = 𝑍) |
| 25 | 23, 24 | eqtrd 2229 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = 𝑍) |
| 26 | | seqeq1 10542 |
. . . . . . . 8
⊢ (𝐾 = 𝑀 → seq𝐾( + , 𝐹) = seq𝑀( + , 𝐹)) |
| 27 | 26 | fveq1d 5560 |
. . . . . . 7
⊢ (𝐾 = 𝑀 → (seq𝐾( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾)) |
| 28 | 27 | eqeq1d 2205 |
. . . . . 6
⊢ (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)) |
| 29 | 25, 28 | syl5ibcom 155 |
. . . . 5
⊢ (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)) |
| 30 | | eluzel2 9606 |
. . . . . . . . . 10
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 31 | 13, 30 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 32 | 31 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
| 33 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) |
| 34 | 20 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 35 | 22 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 36 | 32, 33, 34, 35 | seq3m1 10565 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹‘𝐾))) |
| 37 | 24 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝐾) = 𝑍) |
| 38 | 37 | oveq2d 5938 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹‘𝐾)) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍)) |
| 39 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍)) |
| 40 | 39 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍)) |
| 41 | | seqz.4 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 + 𝑍) = 𝑍) |
| 42 | 41 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑍) |
| 43 | 42 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑥 ∈ 𝑆 (𝑥 + 𝑍) = 𝑍) |
| 44 | | eqid 2196 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 45 | 44, 32, 34, 35 | seqf 10556 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
| 46 | | eluzp1m1 9625 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈
(ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 47 | 31, 46 | sylan 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐾 − 1) ∈
(ℤ≥‘𝑀)) |
| 48 | 45, 47 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆) |
| 49 | 40, 43, 48 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍) |
| 50 | 36, 38, 49 | 3eqtrd 2233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍) |
| 51 | 50 | ex 115 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)) |
| 52 | | uzp1 9635 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (𝐾 = 𝑀 ∨ 𝐾 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 53 | 13, 52 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝐾 = 𝑀 ∨ 𝐾 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 54 | 29, 51, 53 | mpjaod 719 |
. . . 4
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍) |
| 55 | 54 | a1i 9 |
. . 3
⊢ (𝐾 ∈ ℤ → (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)) |
| 56 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ (ℤ≥‘𝐾)) |
| 57 | 13 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 58 | | uztrn 9618 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 59 | 56, 57, 58 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 60 | 20 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 61 | 22 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 62 | 59, 60, 61 | seq3p1 10557 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
| 63 | 62 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1)))) |
| 64 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) |
| 65 | 64 | oveq1d 5937 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → ((seq𝑀( + , 𝐹)‘𝑘) + (𝐹‘(𝑘 + 1))) = (𝑍 + (𝐹‘(𝑘 + 1)))) |
| 66 | | oveq2 5930 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘(𝑘 + 1)) → (𝑍 + 𝑥) = (𝑍 + (𝐹‘(𝑘 + 1)))) |
| 67 | 66 | eqeq1d 2205 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘(𝑘 + 1)) → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍)) |
| 68 | | seqz.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑍 + 𝑥) = 𝑍) |
| 69 | 68 | ralrimiva 2570 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑍) |
| 70 | 69 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ∀𝑥 ∈ 𝑆 (𝑍 + 𝑥) = 𝑍) |
| 71 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑘 + 1))) |
| 72 | 71 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑘 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑘 + 1)) ∈ 𝑆)) |
| 73 | 20 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 74 | 73 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 75 | | peano2uz 9657 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 76 | 59, 75 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑘 + 1) ∈
(ℤ≥‘𝑀)) |
| 77 | 72, 74, 76 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘(𝑘 + 1)) ∈ 𝑆) |
| 78 | 67, 70, 77 | rspcdva 2873 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍) |
| 79 | 78 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝑍 + (𝐹‘(𝑘 + 1))) = 𝑍) |
| 80 | 63, 65, 79 | 3eqtrd 2233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) ∧ (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍) |
| 81 | 80 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍)) |
| 82 | 81 | expcom 116 |
. . . 4
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → (𝜑 → ((seq𝑀( + , 𝐹)‘𝑘) = 𝑍 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
| 83 | 82 | a2d 26 |
. . 3
⊢ (𝑘 ∈
(ℤ≥‘𝐾) → ((𝜑 → (seq𝑀( + , 𝐹)‘𝑘) = 𝑍) → (𝜑 → (seq𝑀( + , 𝐹)‘(𝑘 + 1)) = 𝑍))) |
| 84 | 5, 7, 9, 11, 55, 83 | uzind4 9662 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)) |
| 85 | 3, 84 | mpcom 36 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍) |