Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > redcwlpolemeq1 | GIF version |
Description: Lemma for redcwlpo 13934. A biconditionalized version of trilpolemeq1 13919. (Contributed by Jim Kingdon, 21-Jun-2024.) |
Ref | Expression |
---|---|
redcwlpolemeq1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
redcwlpolemeq1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
Ref | Expression |
---|---|
redcwlpolemeq1 | ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redcwlpolemeq1.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐹:ℕ⟶{0, 1}) |
3 | redcwlpolemeq1.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
4 | simpr 109 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐴 = 1) | |
5 | 2, 3, 4 | trilpolemeq1 13919 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 1) → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) |
6 | fveqeq2 5495 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐹‘𝑥) = 1 ↔ (𝐹‘𝑖) = 1)) | |
7 | simplr 520 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | |
8 | simpr 109 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
9 | 6, 7, 8 | rspcdva 2835 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) = 1) |
10 | 9 | oveq2d 5858 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) |
11 | 2nn 9018 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
13 | 8 | nnnn0d 9167 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
14 | 12, 13 | nnexpcld 10610 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
15 | 14 | nncnd 8871 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℂ) |
16 | 14 | nnap0d 8903 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) # 0) |
17 | 15, 16 | recclapd 8677 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
18 | 17 | mulid1d 7916 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖))) |
19 | 10, 18 | eqtrd 2198 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) |
20 | 19 | sumeq2dv 11309 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = Σ𝑖 ∈ ℕ (1 / (2↑𝑖))) |
21 | geoihalfsum 11463 | . . . 4 ⊢ Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = 1 | |
22 | 21 | eqcomi 2169 | . . 3 ⊢ 1 = Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) |
23 | 20, 3, 22 | 3eqtr4g 2224 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) → 𝐴 = 1) |
24 | 5, 23 | impbida 586 | 1 ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 {cpr 3577 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 0cc0 7753 1c1 7754 · cmul 7758 / cdiv 8568 ℕcn 8857 2c2 8908 ↑cexp 10454 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: redcwlpo 13934 neapmkvlem 13945 |
Copyright terms: Public domain | W3C validator |