| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > redcwlpolemeq1 | GIF version | ||
| Description: Lemma for redcwlpo 16166. A biconditionalized version of trilpolemeq1 16151. (Contributed by Jim Kingdon, 21-Jun-2024.) |
| Ref | Expression |
|---|---|
| redcwlpolemeq1.f | ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
| redcwlpolemeq1.a | ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) |
| Ref | Expression |
|---|---|
| redcwlpolemeq1 | ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redcwlpolemeq1.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐹:ℕ⟶{0, 1}) |
| 3 | redcwlpolemeq1.a | . . 3 ⊢ 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) | |
| 4 | simpr 110 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 1) → 𝐴 = 1) | |
| 5 | 2, 3, 4 | trilpolemeq1 16151 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 1) → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) |
| 6 | fveqeq2 5603 | . . . . . . 7 ⊢ (𝑥 = 𝑖 → ((𝐹‘𝑥) = 1 ↔ (𝐹‘𝑖) = 1)) | |
| 7 | simplr 528 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) | |
| 8 | simpr 110 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) | |
| 9 | 6, 7, 8 | rspcdva 2886 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) = 1) |
| 10 | 9 | oveq2d 5978 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) |
| 11 | 2nn 9228 | . . . . . . . . . 10 ⊢ 2 ∈ ℕ | |
| 12 | 11 | a1i 9 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 2 ∈ ℕ) |
| 13 | 8 | nnnn0d 9378 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
| 14 | 12, 13 | nnexpcld 10872 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℕ) |
| 15 | 14 | nncnd 9080 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℂ) |
| 16 | 14 | nnap0d 9112 | . . . . . . 7 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (2↑𝑖) # 0) |
| 17 | 15, 16 | recclapd 8884 | . . . . . 6 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ) |
| 18 | 17 | mulridd 8119 | . . . . 5 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖))) |
| 19 | 10, 18 | eqtrd 2239 | . . . 4 ⊢ (((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) |
| 20 | 19 | sumeq2dv 11764 | . . 3 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = Σ𝑖 ∈ ℕ (1 / (2↑𝑖))) |
| 21 | geoihalfsum 11918 | . . . 4 ⊢ Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) = 1 | |
| 22 | 21 | eqcomi 2210 | . . 3 ⊢ 1 = Σ𝑖 ∈ ℕ (1 / (2↑𝑖)) |
| 23 | 20, 3, 22 | 3eqtr4g 2264 | . 2 ⊢ ((𝜑 ∧ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1) → 𝐴 = 1) |
| 24 | 5, 23 | impbida 596 | 1 ⊢ (𝜑 → (𝐴 = 1 ↔ ∀𝑥 ∈ ℕ (𝐹‘𝑥) = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {cpr 3639 ⟶wf 5281 ‘cfv 5285 (class class class)co 5962 0cc0 7955 1c1 7956 · cmul 7960 / cdiv 8775 ℕcn 9066 2c2 9117 ↑cexp 10715 Σcsu 11749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-ico 10046 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 |
| This theorem is referenced by: redcwlpo 16166 neapmkvlem 16178 |
| Copyright terms: Public domain | W3C validator |