ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpd GIF version

Theorem isgrpd 13225
Description: Deduce a group from its properties. Unlike isgrpd2 13223, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b (𝜑𝐵 = (Base‘𝐺))
isgrpd.p (𝜑+ = (+g𝐺))
isgrpd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpd.z (𝜑0𝐵)
isgrpd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
isgrpd.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥,𝑦,𝑧, +   𝑥, 0 ,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑦,𝑁   𝜑,𝑥,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpd
StepHypRef Expression
1 isgrpd.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd.c . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
4 isgrpd.a . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
5 isgrpd.z . 2 (𝜑0𝐵)
6 isgrpd.i . 2 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
7 isgrpd.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
8 isgrpd.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
9 oveq1 5932 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
109eqeq1d 2205 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
1110rspcev 2868 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
127, 8, 11syl2anc 411 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
131, 2, 3, 4, 5, 6, 12isgrpde 13224 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wrex 2476  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205
This theorem is referenced by:  isgrpi  13226  grpressid  13263  issubg2m  13395
  Copyright terms: Public domain W3C validator