Step | Hyp | Ref
| Expression |
1 | | bezoutlemgcd.3 |
. . . 4
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
2 | 1 | nn0red 9168 |
. . 3
⊢ (𝜑 → 𝐷 ∈ ℝ) |
3 | | elrabi 2879 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} → 𝑤 ∈ ℤ) |
4 | 3 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ∈ ℤ) |
5 | 4 | zred 9313 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ∈ ℝ) |
6 | 2 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝐷 ∈ ℝ) |
7 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) |
8 | | breq1 3985 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) |
9 | 7, 8 | anbi12d 465 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
10 | 9 | elrab 2882 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
11 | 10 | simprbi 273 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} → (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) |
12 | 11 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) |
13 | | breq1 3985 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ≤ 𝐷 ↔ 𝑤 ≤ 𝐷)) |
14 | 9, 13 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷) ↔ ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷))) |
15 | | bezoutlemgcd.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℤ) |
16 | | bezoutlemgcd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℤ) |
17 | | bezoutlemgcd.4 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
18 | | bezoutlemgcd.5 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
19 | 15, 16, 1, 17, 18 | bezoutlemle 11941 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) |
20 | 19 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) |
21 | | simpr 109 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ) |
22 | 14, 20, 21 | rspcdva 2835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷)) |
23 | 3, 22 | sylan2 284 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷)) |
24 | 12, 23 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ≤ 𝐷) |
25 | 5, 6, 24 | lensymd 8020 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → ¬ 𝐷 < 𝑤) |
26 | 25 | ralrimiva 2539 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ¬ 𝐷 < 𝑤) |
27 | 1 | nn0zd 9311 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℤ) |
28 | | iddvds 11744 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) |
29 | 27, 28 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∥ 𝐷) |
30 | | breq1 3985 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) |
31 | | breq1 3985 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐴 ↔ 𝐷 ∥ 𝐴)) |
32 | | breq1 3985 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐵 ↔ 𝐷 ∥ 𝐵)) |
33 | 31, 32 | anbi12d 465 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
34 | 30, 33 | bibi12d 234 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝐷 ∥ 𝐷 ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)))) |
35 | 34, 17, 27 | rspcdva 2835 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
36 | 29, 35 | mpbid 146 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)) |
37 | 36 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)) |
38 | 1 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈
ℕ0) |
39 | 38 | nn0zd 9311 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ) |
40 | 33 | elrab3 2883 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
41 | 39, 40 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
42 | 37, 41 | mpbird 166 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) |
43 | | breq2 3986 |
. . . . . . 7
⊢ (𝑢 = 𝐷 → (𝑤 < 𝑢 ↔ 𝑤 < 𝐷)) |
44 | 43 | rspcev 2830 |
. . . . . 6
⊢ ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢) |
45 | 42, 44 | sylancom 417 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢) |
46 | 45 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) |
47 | 46 | ralrimiva 2539 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) |
48 | | lttri3 7978 |
. . . . 5
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
49 | 48 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
50 | 49 | eqsupti 6961 |
. . 3
⊢ (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < ) = 𝐷)) |
51 | 2, 26, 47, 50 | mp3and 1330 |
. 2
⊢ (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < ) = 𝐷) |
52 | 51 | eqcomd 2171 |
1
⊢ (𝜑 → 𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < )) |