ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup GIF version

Theorem bezoutlemsup 11964
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemsup (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemsup
Dummy variables 𝑤 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4 (𝜑𝐷 ∈ ℕ0)
21nn0red 9189 . . 3 (𝜑𝐷 ∈ ℝ)
3 elrabi 2883 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → 𝑤 ∈ ℤ)
43adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℤ)
54zred 9334 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℝ)
62adantr 274 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝐷 ∈ ℝ)
7 breq1 3992 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
8 breq1 3992 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
97, 8anbi12d 470 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
109elrab 2886 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤𝐴𝑤𝐵)))
1110simprbi 273 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → (𝑤𝐴𝑤𝐵))
1211adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → (𝑤𝐴𝑤𝐵))
13 breq1 3992 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
149, 13imbi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧𝐴𝑧𝐵) → 𝑧𝐷) ↔ ((𝑤𝐴𝑤𝐵) → 𝑤𝐷)))
15 bezoutlemgcd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
16 bezoutlemgcd.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
17 bezoutlemgcd.4 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
18 bezoutlemgcd.5 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1915, 16, 1, 17, 18bezoutlemle 11963 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
2019adantr 274 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
21 simpr 109 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
2214, 20, 21rspcdva 2839 . . . . . . 7 ((𝜑𝑤 ∈ ℤ) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
233, 22sylan2 284 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
2412, 23mpd 13 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤𝐷)
255, 6, 24lensymd 8041 . . . 4 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ¬ 𝐷 < 𝑤)
2625ralrimiva 2543 . . 3 (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤)
271nn0zd 9332 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
28 iddvds 11766 . . . . . . . . . 10 (𝐷 ∈ ℤ → 𝐷𝐷)
2927, 28syl 14 . . . . . . . . 9 (𝜑𝐷𝐷)
30 breq1 3992 . . . . . . . . . . 11 (𝑧 = 𝐷 → (𝑧𝐷𝐷𝐷))
31 breq1 3992 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐴𝐷𝐴))
32 breq1 3992 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐵𝐷𝐵))
3331, 32anbi12d 470 . . . . . . . . . . 11 (𝑧 = 𝐷 → ((𝑧𝐴𝑧𝐵) ↔ (𝐷𝐴𝐷𝐵)))
3430, 33bibi12d 234 . . . . . . . . . 10 (𝑧 = 𝐷 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵))))
3534, 17, 27rspcdva 2839 . . . . . . . . 9 (𝜑 → (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵)))
3629, 35mpbid 146 . . . . . . . 8 (𝜑 → (𝐷𝐴𝐷𝐵))
3736ad2antrr 485 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷𝐴𝐷𝐵))
381ad2antrr 485 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℕ0)
3938nn0zd 9332 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ)
4033elrab3 2887 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4139, 40syl 14 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4237, 41mpbird 166 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)})
43 breq2 3993 . . . . . . 7 (𝑢 = 𝐷 → (𝑤 < 𝑢𝑤 < 𝐷))
4443rspcev 2834 . . . . . 6 ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4542, 44sylancom 418 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4645ex 114 . . . 4 ((𝜑𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
4746ralrimiva 2543 . . 3 (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
48 lttri3 7999 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4948adantl 275 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5049eqsupti 6973 . . 3 (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷))
512, 26, 47, 50mp3and 1335 . 2 (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷)
5251eqcomd 2176 1 (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {crab 2452   class class class wbr 3989  supcsup 6959  cr 7773  0cc0 7774   < clt 7954  cle 7955  0cn0 9135  cz 9212  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-dvds 11750
This theorem is referenced by:  dfgcd3  11965
  Copyright terms: Public domain W3C validator