ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup GIF version

Theorem bezoutlemsup 11697
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemsup (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemsup
Dummy variables 𝑤 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4 (𝜑𝐷 ∈ ℕ0)
21nn0red 9031 . . 3 (𝜑𝐷 ∈ ℝ)
3 elrabi 2837 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → 𝑤 ∈ ℤ)
43adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℤ)
54zred 9173 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℝ)
62adantr 274 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝐷 ∈ ℝ)
7 breq1 3932 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
8 breq1 3932 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
97, 8anbi12d 464 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
109elrab 2840 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤𝐴𝑤𝐵)))
1110simprbi 273 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → (𝑤𝐴𝑤𝐵))
1211adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → (𝑤𝐴𝑤𝐵))
13 breq1 3932 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
149, 13imbi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧𝐴𝑧𝐵) → 𝑧𝐷) ↔ ((𝑤𝐴𝑤𝐵) → 𝑤𝐷)))
15 bezoutlemgcd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
16 bezoutlemgcd.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
17 bezoutlemgcd.4 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
18 bezoutlemgcd.5 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1915, 16, 1, 17, 18bezoutlemle 11696 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
2019adantr 274 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
21 simpr 109 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
2214, 20, 21rspcdva 2794 . . . . . . 7 ((𝜑𝑤 ∈ ℤ) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
233, 22sylan2 284 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
2412, 23mpd 13 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤𝐷)
255, 6, 24lensymd 7884 . . . 4 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ¬ 𝐷 < 𝑤)
2625ralrimiva 2505 . . 3 (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤)
271nn0zd 9171 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
28 iddvds 11506 . . . . . . . . . 10 (𝐷 ∈ ℤ → 𝐷𝐷)
2927, 28syl 14 . . . . . . . . 9 (𝜑𝐷𝐷)
30 breq1 3932 . . . . . . . . . . 11 (𝑧 = 𝐷 → (𝑧𝐷𝐷𝐷))
31 breq1 3932 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐴𝐷𝐴))
32 breq1 3932 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐵𝐷𝐵))
3331, 32anbi12d 464 . . . . . . . . . . 11 (𝑧 = 𝐷 → ((𝑧𝐴𝑧𝐵) ↔ (𝐷𝐴𝐷𝐵)))
3430, 33bibi12d 234 . . . . . . . . . 10 (𝑧 = 𝐷 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵))))
3534, 17, 27rspcdva 2794 . . . . . . . . 9 (𝜑 → (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵)))
3629, 35mpbid 146 . . . . . . . 8 (𝜑 → (𝐷𝐴𝐷𝐵))
3736ad2antrr 479 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷𝐴𝐷𝐵))
381ad2antrr 479 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℕ0)
3938nn0zd 9171 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ)
4033elrab3 2841 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4139, 40syl 14 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4237, 41mpbird 166 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)})
43 breq2 3933 . . . . . . 7 (𝑢 = 𝐷 → (𝑤 < 𝑢𝑤 < 𝐷))
4443rspcev 2789 . . . . . 6 ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4542, 44sylancom 416 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4645ex 114 . . . 4 ((𝜑𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
4746ralrimiva 2505 . . 3 (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
48 lttri3 7844 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4948adantl 275 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5049eqsupti 6883 . . 3 (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷))
512, 26, 47, 50mp3and 1318 . 2 (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷)
5251eqcomd 2145 1 (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420   class class class wbr 3929  supcsup 6869  cr 7619  0cc0 7620   < clt 7800  cle 7801  0cn0 8977  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-dvds 11494
This theorem is referenced by:  dfgcd3  11698
  Copyright terms: Public domain W3C validator