ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup GIF version

Theorem bezoutlemsup 11537
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemsup (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemsup
Dummy variables 𝑤 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4 (𝜑𝐷 ∈ ℕ0)
21nn0red 8929 . . 3 (𝜑𝐷 ∈ ℝ)
3 elrabi 2804 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → 𝑤 ∈ ℤ)
43adantl 273 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℤ)
54zred 9071 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℝ)
62adantr 272 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝐷 ∈ ℝ)
7 breq1 3896 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
8 breq1 3896 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
97, 8anbi12d 462 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
109elrab 2807 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤𝐴𝑤𝐵)))
1110simprbi 271 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → (𝑤𝐴𝑤𝐵))
1211adantl 273 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → (𝑤𝐴𝑤𝐵))
13 breq1 3896 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
149, 13imbi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧𝐴𝑧𝐵) → 𝑧𝐷) ↔ ((𝑤𝐴𝑤𝐵) → 𝑤𝐷)))
15 bezoutlemgcd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
16 bezoutlemgcd.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
17 bezoutlemgcd.4 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
18 bezoutlemgcd.5 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1915, 16, 1, 17, 18bezoutlemle 11536 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
2019adantr 272 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
21 simpr 109 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
2214, 20, 21rspcdva 2763 . . . . . . 7 ((𝜑𝑤 ∈ ℤ) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
233, 22sylan2 282 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
2412, 23mpd 13 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤𝐷)
255, 6, 24lensymd 7801 . . . 4 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ¬ 𝐷 < 𝑤)
2625ralrimiva 2477 . . 3 (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤)
271nn0zd 9069 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
28 iddvds 11348 . . . . . . . . . 10 (𝐷 ∈ ℤ → 𝐷𝐷)
2927, 28syl 14 . . . . . . . . 9 (𝜑𝐷𝐷)
30 breq1 3896 . . . . . . . . . . 11 (𝑧 = 𝐷 → (𝑧𝐷𝐷𝐷))
31 breq1 3896 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐴𝐷𝐴))
32 breq1 3896 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐵𝐷𝐵))
3331, 32anbi12d 462 . . . . . . . . . . 11 (𝑧 = 𝐷 → ((𝑧𝐴𝑧𝐵) ↔ (𝐷𝐴𝐷𝐵)))
3430, 33bibi12d 234 . . . . . . . . . 10 (𝑧 = 𝐷 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵))))
3534, 17, 27rspcdva 2763 . . . . . . . . 9 (𝜑 → (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵)))
3629, 35mpbid 146 . . . . . . . 8 (𝜑 → (𝐷𝐴𝐷𝐵))
3736ad2antrr 477 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷𝐴𝐷𝐵))
381ad2antrr 477 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℕ0)
3938nn0zd 9069 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ)
4033elrab3 2808 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4139, 40syl 14 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4237, 41mpbird 166 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)})
43 breq2 3897 . . . . . . 7 (𝑢 = 𝐷 → (𝑤 < 𝑢𝑤 < 𝐷))
4443rspcev 2758 . . . . . 6 ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4542, 44sylancom 414 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4645ex 114 . . . 4 ((𝜑𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
4746ralrimiva 2477 . . 3 (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
48 lttri3 7761 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4948adantl 273 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5049eqsupti 6833 . . 3 (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷))
512, 26, 47, 50mp3and 1299 . 2 (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷)
5251eqcomd 2118 1 (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1312  wcel 1461  wral 2388  wrex 2389  {crab 2392   class class class wbr 3893  supcsup 6819  cr 7540  0cc0 7541   < clt 7718  cle 7719  0cn0 8875  cz 8952  cdvds 11335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-sup 6821  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-n0 8876  df-z 8953  df-q 9308  df-dvds 11336
This theorem is referenced by:  dfgcd3  11538
  Copyright terms: Public domain W3C validator