| Step | Hyp | Ref
| Expression |
| 1 | | bezoutlemgcd.3 |
. . . 4
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
| 2 | 1 | nn0red 9303 |
. . 3
⊢ (𝜑 → 𝐷 ∈ ℝ) |
| 3 | | elrabi 2917 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} → 𝑤 ∈ ℤ) |
| 4 | 3 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ∈ ℤ) |
| 5 | 4 | zred 9448 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ∈ ℝ) |
| 6 | 2 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝐷 ∈ ℝ) |
| 7 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) |
| 8 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) |
| 9 | 7, 8 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 10 | 9 | elrab 2920 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 11 | 10 | simprbi 275 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} → (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) |
| 12 | 11 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) |
| 13 | | breq1 4036 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ≤ 𝐷 ↔ 𝑤 ≤ 𝐷)) |
| 14 | 9, 13 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷) ↔ ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷))) |
| 15 | | bezoutlemgcd.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 16 | | bezoutlemgcd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 17 | | bezoutlemgcd.4 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 18 | | bezoutlemgcd.5 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 19 | 15, 16, 1, 17, 18 | bezoutlemle 12175 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) |
| 20 | 19 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) |
| 21 | | simpr 110 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → 𝑤 ∈ ℤ) |
| 22 | 14, 20, 21 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ℤ) → ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷)) |
| 23 | 3, 22 | sylan2 286 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → ((𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵) → 𝑤 ≤ 𝐷)) |
| 24 | 12, 23 | mpd 13 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → 𝑤 ≤ 𝐷) |
| 25 | 5, 6, 24 | lensymd 8148 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) → ¬ 𝐷 < 𝑤) |
| 26 | 25 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ¬ 𝐷 < 𝑤) |
| 27 | 1 | nn0zd 9446 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ ℤ) |
| 28 | | iddvds 11969 |
. . . . . . . . . 10
⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∥ 𝐷) |
| 30 | | breq1 4036 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐷 ↔ 𝐷 ∥ 𝐷)) |
| 31 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐴 ↔ 𝐷 ∥ 𝐴)) |
| 32 | | breq1 4036 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝐷 → (𝑧 ∥ 𝐵 ↔ 𝐷 ∥ 𝐵)) |
| 33 | 31, 32 | anbi12d 473 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
| 34 | 30, 33 | bibi12d 235 |
. . . . . . . . . 10
⊢ (𝑧 = 𝐷 → ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝐷 ∥ 𝐷 ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)))) |
| 35 | 34, 17, 27 | rspcdva 2873 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷 ∥ 𝐷 ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
| 36 | 29, 35 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)) |
| 37 | 36 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵)) |
| 38 | 1 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈
ℕ0) |
| 39 | 38 | nn0zd 9446 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ) |
| 40 | 33 | elrab3 2921 |
. . . . . . . 8
⊢ (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
| 41 | 39, 40 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ↔ (𝐷 ∥ 𝐴 ∧ 𝐷 ∥ 𝐵))) |
| 42 | 37, 41 | mpbird 167 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}) |
| 43 | | breq2 4037 |
. . . . . . 7
⊢ (𝑢 = 𝐷 → (𝑤 < 𝑢 ↔ 𝑤 < 𝐷)) |
| 44 | 43 | rspcev 2868 |
. . . . . 6
⊢ ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢) |
| 45 | 42, 44 | sylancom 420 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢) |
| 46 | 45 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) |
| 47 | 46 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) |
| 48 | | lttri3 8106 |
. . . . 5
⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 49 | 48 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 50 | 49 | eqsupti 7062 |
. . 3
⊢ (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < ) = 𝐷)) |
| 51 | 2, 26, 47, 50 | mp3and 1351 |
. 2
⊢ (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < ) = 𝐷) |
| 52 | 51 | eqcomd 2202 |
1
⊢ (𝜑 → 𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)}, ℝ, < )) |