Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemsup GIF version

Theorem bezoutlemsup 11769
 Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the supremum of divisors of both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemsup (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemsup
Dummy variables 𝑤 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.3 . . . 4 (𝜑𝐷 ∈ ℕ0)
21nn0red 9084 . . 3 (𝜑𝐷 ∈ ℝ)
3 elrabi 2843 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → 𝑤 ∈ ℤ)
43adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℤ)
54zred 9226 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤 ∈ ℝ)
62adantr 274 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝐷 ∈ ℝ)
7 breq1 3942 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
8 breq1 3942 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
97, 8anbi12d 465 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
109elrab 2846 . . . . . . . 8 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝑤 ∈ ℤ ∧ (𝑤𝐴𝑤𝐵)))
1110simprbi 273 . . . . . . 7 (𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} → (𝑤𝐴𝑤𝐵))
1211adantl 275 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → (𝑤𝐴𝑤𝐵))
13 breq1 3942 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
149, 13imbi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧𝐴𝑧𝐵) → 𝑧𝐷) ↔ ((𝑤𝐴𝑤𝐵) → 𝑤𝐷)))
15 bezoutlemgcd.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℤ)
16 bezoutlemgcd.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
17 bezoutlemgcd.4 . . . . . . . . . 10 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
18 bezoutlemgcd.5 . . . . . . . . . 10 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
1915, 16, 1, 17, 18bezoutlemle 11768 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
2019adantr 274 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
21 simpr 109 . . . . . . . 8 ((𝜑𝑤 ∈ ℤ) → 𝑤 ∈ ℤ)
2214, 20, 21rspcdva 2800 . . . . . . 7 ((𝜑𝑤 ∈ ℤ) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
233, 22sylan2 284 . . . . . 6 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ((𝑤𝐴𝑤𝐵) → 𝑤𝐷))
2412, 23mpd 13 . . . . 5 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → 𝑤𝐷)
255, 6, 24lensymd 7937 . . . 4 ((𝜑𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}) → ¬ 𝐷 < 𝑤)
2625ralrimiva 2510 . . 3 (𝜑 → ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤)
271nn0zd 9224 . . . . . . . . . 10 (𝜑𝐷 ∈ ℤ)
28 iddvds 11578 . . . . . . . . . 10 (𝐷 ∈ ℤ → 𝐷𝐷)
2927, 28syl 14 . . . . . . . . 9 (𝜑𝐷𝐷)
30 breq1 3942 . . . . . . . . . . 11 (𝑧 = 𝐷 → (𝑧𝐷𝐷𝐷))
31 breq1 3942 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐴𝐷𝐴))
32 breq1 3942 . . . . . . . . . . . 12 (𝑧 = 𝐷 → (𝑧𝐵𝐷𝐵))
3331, 32anbi12d 465 . . . . . . . . . . 11 (𝑧 = 𝐷 → ((𝑧𝐴𝑧𝐵) ↔ (𝐷𝐴𝐷𝐵)))
3430, 33bibi12d 234 . . . . . . . . . 10 (𝑧 = 𝐷 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵))))
3534, 17, 27rspcdva 2800 . . . . . . . . 9 (𝜑 → (𝐷𝐷 ↔ (𝐷𝐴𝐷𝐵)))
3629, 35mpbid 146 . . . . . . . 8 (𝜑 → (𝐷𝐴𝐷𝐵))
3736ad2antrr 480 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷𝐴𝐷𝐵))
381ad2antrr 480 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℕ0)
3938nn0zd 9224 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ ℤ)
4033elrab3 2847 . . . . . . . 8 (𝐷 ∈ ℤ → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4139, 40syl 14 . . . . . . 7 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → (𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ↔ (𝐷𝐴𝐷𝐵)))
4237, 41mpbird 166 . . . . . 6 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → 𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)})
43 breq2 3943 . . . . . . 7 (𝑢 = 𝐷 → (𝑤 < 𝑢𝑤 < 𝐷))
4443rspcev 2795 . . . . . 6 ((𝐷 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4542, 44sylancom 417 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ 𝑤 < 𝐷) → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)
4645ex 114 . . . 4 ((𝜑𝑤 ∈ ℝ) → (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
4746ralrimiva 2510 . . 3 (𝜑 → ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢))
48 lttri3 7897 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4948adantl 275 . . . 4 ((𝜑 ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
5049eqsupti 6900 . . 3 (𝜑 → ((𝐷 ∈ ℝ ∧ ∀𝑤 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)} ¬ 𝐷 < 𝑤 ∧ ∀𝑤 ∈ ℝ (𝑤 < 𝐷 → ∃𝑢 ∈ {𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}𝑤 < 𝑢)) → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷))
512, 26, 47, 50mp3and 1319 . 2 (𝜑 → sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ) = 𝐷)
5251eqcomd 2147 1 (𝜑𝐷 = sup({𝑧 ∈ ℤ ∣ (𝑧𝐴𝑧𝐵)}, ℝ, < ))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2112  ∀wral 2418  ∃wrex 2419  {crab 2422   class class class wbr 3939  supcsup 6886  ℝcr 7672  0cc0 7673   < clt 7853   ≤ cle 7854  ℕ0cn0 9030  ℤcz 9107   ∥ cdvds 11565 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-br 3940  df-opab 4000  df-mpt 4001  df-id 4226  df-po 4229  df-iso 4230  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-1st 6050  df-2nd 6051  df-sup 6888  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486  df-inn 8774  df-n0 9031  df-z 9108  df-q 9468  df-dvds 11566 This theorem is referenced by:  dfgcd3  11770
 Copyright terms: Public domain W3C validator