Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltadd1dd | GIF version |
Description: Addition to both sides of 'less than'. Theorem I.18 of [Apostol] p. 20. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltadd1dd.4 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltadd1dd | ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | ltadd1d 8407 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶))) |
6 | 1, 5 | mpbid 146 | 1 ⊢ (𝜑 → (𝐴 + 𝐶) < (𝐵 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 ℝcr 7725 + caddc 7729 < clt 7906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-iota 5134 df-fv 5177 df-ov 5824 df-pnf 7908 df-mnf 7909 df-ltxr 7911 |
This theorem is referenced by: fzoaddel 10084 flqaddz 10189 cvg1nlemres 10878 recvguniqlem 10887 exmidunben 12138 |
Copyright terms: Public domain | W3C validator |