Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flqaddz | GIF version |
Description: An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.) |
Ref | Expression |
---|---|
flqaddz | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcl 10241 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
3 | 2 | zred 9346 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
4 | qre 9596 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) |
6 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 6 | zred 9346 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
8 | flqle 10246 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
10 | 3, 5, 7, 9 | leadd1dd 8490 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁)) |
11 | 1red 7947 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
12 | 3, 11 | readdcld 7961 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
13 | flqltp1 10247 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
15 | 5, 12, 7, 14 | ltadd1dd 8487 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁)) |
16 | 2 | zcnd 9347 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ) |
17 | 1cnd 7948 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ) | |
18 | 6 | zcnd 9347 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
19 | 16, 17, 18 | add32d 8099 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1)) |
20 | 15, 19 | breqtrd 4024 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)) |
21 | zq 9597 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
22 | qaddcl 9606 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝐴 + 𝑁) ∈ ℚ) | |
23 | 21, 22 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℚ) |
24 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℚ) | |
25 | 24 | flqcld 10245 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
26 | 25, 6 | zaddcld 9350 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ) |
27 | flqbi 10258 | . . 3 ⊢ (((𝐴 + 𝑁) ∈ ℚ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) | |
28 | 23, 26, 27 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) |
29 | 10, 20, 28 | mpbir2and 944 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℝcr 7785 1c1 7787 + caddc 7789 < clt 7966 ≤ cle 7967 ℤcz 9224 ℚcq 9590 ⌊cfl 10236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-n0 9148 df-z 9225 df-q 9591 df-rp 9623 df-fl 10238 |
This theorem is referenced by: flqzadd 10266 modqcyc 10327 fldivp1 12311 |
Copyright terms: Public domain | W3C validator |