ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqaddz GIF version

Theorem flqaddz 10253
Description: An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
Assertion
Ref Expression
flqaddz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))

Proof of Theorem flqaddz
StepHypRef Expression
1 flqcl 10229 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
21adantr 274 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
32zred 9334 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
4 qre 9584 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
54adantr 274 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ)
6 simpr 109 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
76zred 9334 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
8 flqle 10234 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
98adantr 274 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
103, 5, 7, 9leadd1dd 8478 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁))
11 1red 7935 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
123, 11readdcld 7949 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 flqltp1 10235 . . . . 5 (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
1413adantr 274 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
155, 12, 7, 14ltadd1dd 8475 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁))
162zcnd 9335 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ)
17 1cnd 7936 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ)
186zcnd 9335 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1916, 17, 18add32d 8087 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1))
2015, 19breqtrd 4015 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))
21 zq 9585 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
22 qaddcl 9594 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝐴 + 𝑁) ∈ ℚ)
2321, 22sylan2 284 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℚ)
24 simpl 108 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℚ)
2524flqcld 10233 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
2625, 6zaddcld 9338 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ)
27 flqbi 10246 . . 3 (((𝐴 + 𝑁) ∈ ℚ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2823, 26, 27syl2anc 409 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2910, 20, 28mpbir2and 939 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cz 9212  cq 9578  cfl 10224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226
This theorem is referenced by:  flqzadd  10254  modqcyc  10315  fldivp1  12300
  Copyright terms: Public domain W3C validator