![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flqaddz | GIF version |
Description: An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.) |
Ref | Expression |
---|---|
flqaddz | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcl 10306 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
3 | 2 | zred 9406 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
4 | qre 9657 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) |
6 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 6 | zred 9406 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
8 | flqle 10311 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
10 | 3, 5, 7, 9 | leadd1dd 8547 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁)) |
11 | 1red 8003 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
12 | 3, 11 | readdcld 8018 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
13 | flqltp1 10312 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | |
14 | 13 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
15 | 5, 12, 7, 14 | ltadd1dd 8544 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁)) |
16 | 2 | zcnd 9407 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ) |
17 | 1cnd 8004 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ) | |
18 | 6 | zcnd 9407 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
19 | 16, 17, 18 | add32d 8156 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1)) |
20 | 15, 19 | breqtrd 4044 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)) |
21 | zq 9658 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
22 | qaddcl 9667 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝐴 + 𝑁) ∈ ℚ) | |
23 | 21, 22 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℚ) |
24 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℚ) | |
25 | 24 | flqcld 10310 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
26 | 25, 6 | zaddcld 9410 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ) |
27 | flqbi 10323 | . . 3 ⊢ (((𝐴 + 𝑁) ∈ ℚ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) | |
28 | 23, 26, 27 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) |
29 | 10, 20, 28 | mpbir2and 946 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 ℝcr 7841 1c1 7843 + caddc 7845 < clt 8023 ≤ cle 8024 ℤcz 9284 ℚcq 9651 ⌊cfl 10301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-n0 9208 df-z 9285 df-q 9652 df-rp 9686 df-fl 10303 |
This theorem is referenced by: flqzadd 10331 modqcyc 10392 fldivp1 12383 |
Copyright terms: Public domain | W3C validator |