Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flqaddz | GIF version |
Description: An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.) |
Ref | Expression |
---|---|
flqaddz | ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flqcl 10208 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
3 | 2 | zred 9313 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
4 | qre 9563 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
5 | 4 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ) |
6 | simpr 109 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
7 | 6 | zred 9313 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
8 | flqle 10213 | . . . 4 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴) | |
9 | 8 | adantr 274 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
10 | 3, 5, 7, 9 | leadd1dd 8457 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁)) |
11 | 1red 7914 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ) | |
12 | 3, 11 | readdcld 7928 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
13 | flqltp1 10214 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1)) | |
14 | 13 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
15 | 5, 12, 7, 14 | ltadd1dd 8454 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁)) |
16 | 2 | zcnd 9314 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ) |
17 | 1cnd 7915 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ) | |
18 | 6 | zcnd 9314 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
19 | 16, 17, 18 | add32d 8066 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1)) |
20 | 15, 19 | breqtrd 4008 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)) |
21 | zq 9564 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℚ) | |
22 | qaddcl 9573 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝐴 + 𝑁) ∈ ℚ) | |
23 | 21, 22 | sylan2 284 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℚ) |
24 | simpl 108 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℚ) | |
25 | 24 | flqcld 10212 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
26 | 25, 6 | zaddcld 9317 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ) |
27 | flqbi 10225 | . . 3 ⊢ (((𝐴 + 𝑁) ∈ ℚ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) | |
28 | 23, 26, 27 | syl2anc 409 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1)))) |
29 | 10, 20, 28 | mpbir2and 934 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 ℤcz 9191 ℚcq 9557 ⌊cfl 10203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 df-fl 10205 |
This theorem is referenced by: flqzadd 10233 modqcyc 10294 fldivp1 12278 |
Copyright terms: Public domain | W3C validator |