ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flqaddz GIF version

Theorem flqaddz 10232
Description: An integer can be moved in and out of the floor of a sum. (Contributed by Jim Kingdon, 10-Oct-2021.)
Assertion
Ref Expression
flqaddz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))

Proof of Theorem flqaddz
StepHypRef Expression
1 flqcl 10208 . . . . 5 (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ)
21adantr 274 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
32zred 9313 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
4 qre 9563 . . . 4 (𝐴 ∈ ℚ → 𝐴 ∈ ℝ)
54adantr 274 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℝ)
6 simpr 109 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
76zred 9313 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
8 flqle 10213 . . . 4 (𝐴 ∈ ℚ → (⌊‘𝐴) ≤ 𝐴)
98adantr 274 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
103, 5, 7, 9leadd1dd 8457 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁))
11 1red 7914 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
123, 11readdcld 7928 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
13 flqltp1 10214 . . . . 5 (𝐴 ∈ ℚ → 𝐴 < ((⌊‘𝐴) + 1))
1413adantr 274 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
155, 12, 7, 14ltadd1dd 8454 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 1) + 𝑁))
162zcnd 9314 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℂ)
17 1cnd 7915 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℂ)
186zcnd 9314 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
1916, 17, 18add32d 8066 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (((⌊‘𝐴) + 1) + 𝑁) = (((⌊‘𝐴) + 𝑁) + 1))
2015, 19breqtrd 4008 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))
21 zq 9564 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
22 qaddcl 9573 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝐴 + 𝑁) ∈ ℚ)
2321, 22sylan2 284 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝐴 + 𝑁) ∈ ℚ)
24 simpl 108 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℚ)
2524flqcld 10212 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
2625, 6zaddcld 9317 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘𝐴) + 𝑁) ∈ ℤ)
27 flqbi 10225 . . 3 (((𝐴 + 𝑁) ∈ ℚ ∧ ((⌊‘𝐴) + 𝑁) ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2823, 26, 27syl2anc 409 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → ((⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁) ↔ (((⌊‘𝐴) + 𝑁) ≤ (𝐴 + 𝑁) ∧ (𝐴 + 𝑁) < (((⌊‘𝐴) + 𝑁) + 1))))
2910, 20, 28mpbir2and 934 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 + 𝑁)) = ((⌊‘𝐴) + 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cz 9191  cq 9557  cfl 10203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205
This theorem is referenced by:  flqzadd  10233  modqcyc  10294  fldivp1  12278
  Copyright terms: Public domain W3C validator