| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8133 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7897 < clt 8080 ≤ cle 8081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-pre-ltirr 8010 ax-pre-lttrn 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 |
| This theorem is referenced by: ltnsymd 8165 addgt0d 8567 lt2addd 8613 lt2msq1 8931 lediv12a 8940 ledivp1 8949 nn2ge 9042 fznatpl1 10170 exbtwnzlemex 10358 apbtwnz 10383 iseqf1olemkle 10608 expnbnd 10774 nn0ltexp2 10820 iswrdiz 10961 cvg1nlemres 11169 resqrexlemnm 11202 resqrexlemcvg 11203 resqrexlemglsq 11206 sqrtgt0 11218 leabs 11258 ltabs 11271 abslt 11272 absle 11273 maxabslemab 11390 2zsupmax 11410 2zinfmin 11427 xrmaxiflemab 11431 fsum3cvg3 11580 divcnv 11681 expcnvre 11687 absltap 11693 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 cvgratnnlemfm 11713 mertenslemi1 11719 sinltxirr 11945 cos12dec 11952 dvdslelemd 12027 divalglemnn 12102 divalglemeuneg 12107 bitsfzo 12139 bitsmod 12140 lcmgcdlem 12272 isprm5lem 12336 znege1 12373 sqrt2irraplemnn 12374 eulerthlemrprm 12424 eulerthlema 12425 4sqlem7 12580 ennnfonelemex 12658 strleund 12808 suplociccreex 14968 ivthinclemlm 14978 ivthinclemum 14979 ivthinclemlopn 14980 ivthinclemuopn 14982 ivthdec 14988 hoverlt1 14993 hovergt0 14994 dveflem 15070 efltlemlt 15118 sin0pilem1 15125 sin0pilem2 15126 coseq0negpitopi 15180 tangtx 15182 cosq34lt1 15194 cos02pilt1 15195 lgseisenlem1 15419 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 apdifflemf 15803 |
| Copyright terms: Public domain | W3C validator |