| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8180 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 ℝcr 7944 < clt 8127 ≤ cle 8128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltirr 8057 ax-pre-lttrn 8059 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 |
| This theorem is referenced by: ltnsymd 8212 addgt0d 8614 lt2addd 8660 lt2msq1 8978 lediv12a 8987 ledivp1 8996 nn2ge 9089 fznatpl1 10218 exbtwnzlemex 10414 apbtwnz 10439 iseqf1olemkle 10664 expnbnd 10830 nn0ltexp2 10876 iswrdiz 11023 cvg1nlemres 11371 resqrexlemnm 11404 resqrexlemcvg 11405 resqrexlemglsq 11408 sqrtgt0 11420 leabs 11460 ltabs 11473 abslt 11474 absle 11475 maxabslemab 11592 2zsupmax 11612 2zinfmin 11629 xrmaxiflemab 11633 fsum3cvg3 11782 divcnv 11883 expcnvre 11889 absltap 11895 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 cvgratnnlemfm 11915 mertenslemi1 11921 sinltxirr 12147 cos12dec 12154 dvdslelemd 12229 divalglemnn 12304 divalglemeuneg 12309 bitsfzo 12341 bitsmod 12342 lcmgcdlem 12474 isprm5lem 12538 znege1 12575 sqrt2irraplemnn 12576 eulerthlemrprm 12626 eulerthlema 12627 4sqlem7 12782 ennnfonelemex 12860 strleund 13010 suplociccreex 15171 ivthinclemlm 15181 ivthinclemum 15182 ivthinclemlopn 15183 ivthinclemuopn 15185 ivthdec 15191 hoverlt1 15196 hovergt0 15197 dveflem 15273 efltlemlt 15321 sin0pilem1 15328 sin0pilem2 15329 coseq0negpitopi 15383 tangtx 15385 cosq34lt1 15397 cos02pilt1 15398 lgseisenlem1 15622 lgsquadlem1 15629 lgsquadlem2 15630 lgsquadlem3 15631 apdifflemf 16126 |
| Copyright terms: Public domain | W3C validator |