Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltled | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltle 7958 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 class class class wbr 3965 ℝcr 7725 < clt 7906 ≤ cle 7907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-pre-ltirr 7838 ax-pre-lttrn 7840 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-cnv 4593 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 |
This theorem is referenced by: ltnsymd 7989 addgt0d 8390 lt2addd 8436 lt2msq1 8750 lediv12a 8759 ledivp1 8768 nn2ge 8860 fznatpl1 9971 exbtwnzlemex 10142 apbtwnz 10166 iseqf1olemkle 10376 expnbnd 10534 cvg1nlemres 10878 resqrexlemnm 10911 resqrexlemcvg 10912 resqrexlemglsq 10915 sqrtgt0 10927 leabs 10967 ltabs 10980 abslt 10981 absle 10982 maxabslemab 11099 2zsupmax 11118 xrmaxiflemab 11137 fsum3cvg3 11286 divcnv 11387 expcnvre 11393 absltap 11399 cvgratnnlemnexp 11414 cvgratnnlemmn 11415 cvgratnnlemfm 11419 mertenslemi1 11425 cos12dec 11657 dvdslelemd 11727 divalglemnn 11801 divalglemeuneg 11806 lcmgcdlem 11945 znege1 12043 sqrt2irraplemnn 12044 eulerthlemrprm 12092 eulerthlema 12093 ennnfonelemex 12126 strleund 12249 suplociccreex 12973 ivthinclemlm 12983 ivthinclemum 12984 ivthinclemlopn 12985 ivthinclemuopn 12987 ivthdec 12993 dveflem 13058 efltlemlt 13066 sin0pilem1 13073 sin0pilem2 13074 coseq0negpitopi 13128 tangtx 13130 cosq34lt1 13142 cos02pilt1 13143 apdifflemf 13588 |
Copyright terms: Public domain | W3C validator |