![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltled | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltle 8107 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-pre-ltirr 7984 ax-pre-lttrn 7986 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 |
This theorem is referenced by: ltnsymd 8139 addgt0d 8540 lt2addd 8586 lt2msq1 8904 lediv12a 8913 ledivp1 8922 nn2ge 9015 fznatpl1 10142 exbtwnzlemex 10318 apbtwnz 10343 iseqf1olemkle 10568 expnbnd 10734 nn0ltexp2 10780 iswrdiz 10921 cvg1nlemres 11129 resqrexlemnm 11162 resqrexlemcvg 11163 resqrexlemglsq 11166 sqrtgt0 11178 leabs 11218 ltabs 11231 abslt 11232 absle 11233 maxabslemab 11350 2zsupmax 11369 2zinfmin 11386 xrmaxiflemab 11390 fsum3cvg3 11539 divcnv 11640 expcnvre 11646 absltap 11652 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 cvgratnnlemfm 11672 mertenslemi1 11678 sinltxirr 11904 cos12dec 11911 dvdslelemd 11985 divalglemnn 12059 divalglemeuneg 12064 lcmgcdlem 12215 isprm5lem 12279 znege1 12316 sqrt2irraplemnn 12317 eulerthlemrprm 12367 eulerthlema 12368 4sqlem7 12522 ennnfonelemex 12571 strleund 12721 suplociccreex 14778 ivthinclemlm 14788 ivthinclemum 14789 ivthinclemlopn 14790 ivthinclemuopn 14792 ivthdec 14798 hoverlt1 14803 hovergt0 14804 dveflem 14872 efltlemlt 14909 sin0pilem1 14916 sin0pilem2 14917 coseq0negpitopi 14971 tangtx 14973 cosq34lt1 14985 cos02pilt1 14986 lgseisenlem1 15186 lgsquadlem1 15191 apdifflemf 15536 |
Copyright terms: Public domain | W3C validator |