| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8131 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 < clt 8078 ≤ cle 8079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 |
| This theorem is referenced by: ltnsymd 8163 addgt0d 8565 lt2addd 8611 lt2msq1 8929 lediv12a 8938 ledivp1 8947 nn2ge 9040 fznatpl1 10168 exbtwnzlemex 10356 apbtwnz 10381 iseqf1olemkle 10606 expnbnd 10772 nn0ltexp2 10818 iswrdiz 10959 cvg1nlemres 11167 resqrexlemnm 11200 resqrexlemcvg 11201 resqrexlemglsq 11204 sqrtgt0 11216 leabs 11256 ltabs 11269 abslt 11270 absle 11271 maxabslemab 11388 2zsupmax 11408 2zinfmin 11425 xrmaxiflemab 11429 fsum3cvg3 11578 divcnv 11679 expcnvre 11685 absltap 11691 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 cvgratnnlemfm 11711 mertenslemi1 11717 sinltxirr 11943 cos12dec 11950 dvdslelemd 12025 divalglemnn 12100 divalglemeuneg 12105 bitsfzo 12137 bitsmod 12138 lcmgcdlem 12270 isprm5lem 12334 znege1 12371 sqrt2irraplemnn 12372 eulerthlemrprm 12422 eulerthlema 12423 4sqlem7 12578 ennnfonelemex 12656 strleund 12806 suplociccreex 14944 ivthinclemlm 14954 ivthinclemum 14955 ivthinclemlopn 14956 ivthinclemuopn 14958 ivthdec 14964 hoverlt1 14969 hovergt0 14970 dveflem 15046 efltlemlt 15094 sin0pilem1 15101 sin0pilem2 15102 coseq0negpitopi 15156 tangtx 15158 cosq34lt1 15170 cos02pilt1 15171 lgseisenlem1 15395 lgsquadlem1 15402 lgsquadlem2 15403 lgsquadlem3 15404 apdifflemf 15777 |
| Copyright terms: Public domain | W3C validator |