Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltled | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltle 7982 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3981 ℝcr 7748 < clt 7929 ≤ cle 7930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-pre-ltirr 7861 ax-pre-lttrn 7863 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-cnv 4611 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 |
This theorem is referenced by: ltnsymd 8014 addgt0d 8415 lt2addd 8461 lt2msq1 8776 lediv12a 8785 ledivp1 8794 nn2ge 8886 fznatpl1 10007 exbtwnzlemex 10181 apbtwnz 10205 iseqf1olemkle 10415 expnbnd 10574 nn0ltexp2 10619 cvg1nlemres 10923 resqrexlemnm 10956 resqrexlemcvg 10957 resqrexlemglsq 10960 sqrtgt0 10972 leabs 11012 ltabs 11025 abslt 11026 absle 11027 maxabslemab 11144 2zsupmax 11163 2zinfmin 11180 xrmaxiflemab 11184 fsum3cvg3 11333 divcnv 11434 expcnvre 11440 absltap 11446 cvgratnnlemnexp 11461 cvgratnnlemmn 11462 cvgratnnlemfm 11466 mertenslemi1 11472 cos12dec 11704 dvdslelemd 11777 divalglemnn 11851 divalglemeuneg 11856 lcmgcdlem 12005 isprm5lem 12069 znege1 12106 sqrt2irraplemnn 12107 eulerthlemrprm 12157 eulerthlema 12158 4sqlem7 12310 ennnfonelemex 12343 strleund 12478 suplociccreex 13202 ivthinclemlm 13212 ivthinclemum 13213 ivthinclemlopn 13214 ivthinclemuopn 13216 ivthdec 13222 dveflem 13287 efltlemlt 13295 sin0pilem1 13302 sin0pilem2 13303 coseq0negpitopi 13357 tangtx 13359 cosq34lt1 13371 cos02pilt1 13372 apdifflemf 13885 |
Copyright terms: Public domain | W3C validator |