| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) | 
| Ref | Expression | 
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8114 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | 
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 < clt 8061 ≤ cle 8062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 ax-pre-lttrn 7993 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 | 
| This theorem is referenced by: ltnsymd 8146 addgt0d 8548 lt2addd 8594 lt2msq1 8912 lediv12a 8921 ledivp1 8930 nn2ge 9023 fznatpl1 10151 exbtwnzlemex 10339 apbtwnz 10364 iseqf1olemkle 10589 expnbnd 10755 nn0ltexp2 10801 iswrdiz 10942 cvg1nlemres 11150 resqrexlemnm 11183 resqrexlemcvg 11184 resqrexlemglsq 11187 sqrtgt0 11199 leabs 11239 ltabs 11252 abslt 11253 absle 11254 maxabslemab 11371 2zsupmax 11391 2zinfmin 11408 xrmaxiflemab 11412 fsum3cvg3 11561 divcnv 11662 expcnvre 11668 absltap 11674 cvgratnnlemnexp 11689 cvgratnnlemmn 11690 cvgratnnlemfm 11694 mertenslemi1 11700 sinltxirr 11926 cos12dec 11933 dvdslelemd 12008 divalglemnn 12083 divalglemeuneg 12088 bitsfzo 12119 lcmgcdlem 12245 isprm5lem 12309 znege1 12346 sqrt2irraplemnn 12347 eulerthlemrprm 12397 eulerthlema 12398 4sqlem7 12553 ennnfonelemex 12631 strleund 12781 suplociccreex 14860 ivthinclemlm 14870 ivthinclemum 14871 ivthinclemlopn 14872 ivthinclemuopn 14874 ivthdec 14880 hoverlt1 14885 hovergt0 14886 dveflem 14962 efltlemlt 15010 sin0pilem1 15017 sin0pilem2 15018 coseq0negpitopi 15072 tangtx 15074 cosq34lt1 15086 cos02pilt1 15087 lgseisenlem1 15311 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 apdifflemf 15690 | 
| Copyright terms: Public domain | W3C validator |