| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8230 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-pre-ltirr 8107 ax-pre-lttrn 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: ltnsymd 8262 addgt0d 8664 lt2addd 8710 lt2msq1 9028 lediv12a 9037 ledivp1 9046 nn2ge 9139 fznatpl1 10268 exbtwnzlemex 10464 apbtwnz 10489 iseqf1olemkle 10714 expnbnd 10880 nn0ltexp2 10926 iswrdiz 11073 cvg1nlemres 11491 resqrexlemnm 11524 resqrexlemcvg 11525 resqrexlemglsq 11528 sqrtgt0 11540 leabs 11580 ltabs 11593 abslt 11594 absle 11595 maxabslemab 11712 2zsupmax 11732 2zinfmin 11749 xrmaxiflemab 11753 fsum3cvg3 11902 divcnv 12003 expcnvre 12009 absltap 12015 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 cvgratnnlemfm 12035 mertenslemi1 12041 sinltxirr 12267 cos12dec 12274 dvdslelemd 12349 divalglemnn 12424 divalglemeuneg 12429 bitsfzo 12461 bitsmod 12462 lcmgcdlem 12594 isprm5lem 12658 znege1 12695 sqrt2irraplemnn 12696 eulerthlemrprm 12746 eulerthlema 12747 4sqlem7 12902 ennnfonelemex 12980 strleund 13131 suplociccreex 15292 ivthinclemlm 15302 ivthinclemum 15303 ivthinclemlopn 15304 ivthinclemuopn 15306 ivthdec 15312 hoverlt1 15317 hovergt0 15318 dveflem 15394 efltlemlt 15442 sin0pilem1 15449 sin0pilem2 15450 coseq0negpitopi 15504 tangtx 15506 cosq34lt1 15518 cos02pilt1 15519 lgseisenlem1 15743 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 apdifflemf 16373 |
| Copyright terms: Public domain | W3C validator |