| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltled | GIF version | ||
| Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Ref | Expression |
|---|---|
| ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltle 8142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
| 5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| 6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ℝcr 7906 < clt 8089 ≤ cle 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-pre-ltirr 8019 ax-pre-lttrn 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4679 df-cnv 4681 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 |
| This theorem is referenced by: ltnsymd 8174 addgt0d 8576 lt2addd 8622 lt2msq1 8940 lediv12a 8949 ledivp1 8958 nn2ge 9051 fznatpl1 10180 exbtwnzlemex 10373 apbtwnz 10398 iseqf1olemkle 10623 expnbnd 10789 nn0ltexp2 10835 iswrdiz 10976 cvg1nlemres 11215 resqrexlemnm 11248 resqrexlemcvg 11249 resqrexlemglsq 11252 sqrtgt0 11264 leabs 11304 ltabs 11317 abslt 11318 absle 11319 maxabslemab 11436 2zsupmax 11456 2zinfmin 11473 xrmaxiflemab 11477 fsum3cvg3 11626 divcnv 11727 expcnvre 11733 absltap 11739 cvgratnnlemnexp 11754 cvgratnnlemmn 11755 cvgratnnlemfm 11759 mertenslemi1 11765 sinltxirr 11991 cos12dec 11998 dvdslelemd 12073 divalglemnn 12148 divalglemeuneg 12153 bitsfzo 12185 bitsmod 12186 lcmgcdlem 12318 isprm5lem 12382 znege1 12419 sqrt2irraplemnn 12420 eulerthlemrprm 12470 eulerthlema 12471 4sqlem7 12626 ennnfonelemex 12704 strleund 12854 suplociccreex 15014 ivthinclemlm 15024 ivthinclemum 15025 ivthinclemlopn 15026 ivthinclemuopn 15028 ivthdec 15034 hoverlt1 15039 hovergt0 15040 dveflem 15116 efltlemlt 15164 sin0pilem1 15171 sin0pilem2 15172 coseq0negpitopi 15226 tangtx 15228 cosq34lt1 15240 cos02pilt1 15241 lgseisenlem1 15465 lgsquadlem1 15472 lgsquadlem2 15473 lgsquadlem3 15474 apdifflemf 15849 |
| Copyright terms: Public domain | W3C validator |