![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltled | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltled.1 | . 2 ⊢ (𝜑 → 𝐴 < 𝐵) | |
2 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltle 8109 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
6 | 1, 5 | mpd 13 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 ax-pre-lttrn 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 |
This theorem is referenced by: ltnsymd 8141 addgt0d 8542 lt2addd 8588 lt2msq1 8906 lediv12a 8915 ledivp1 8924 nn2ge 9017 fznatpl1 10145 exbtwnzlemex 10321 apbtwnz 10346 iseqf1olemkle 10571 expnbnd 10737 nn0ltexp2 10783 iswrdiz 10924 cvg1nlemres 11132 resqrexlemnm 11165 resqrexlemcvg 11166 resqrexlemglsq 11169 sqrtgt0 11181 leabs 11221 ltabs 11234 abslt 11235 absle 11236 maxabslemab 11353 2zsupmax 11372 2zinfmin 11389 xrmaxiflemab 11393 fsum3cvg3 11542 divcnv 11643 expcnvre 11649 absltap 11655 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 cvgratnnlemfm 11675 mertenslemi1 11681 sinltxirr 11907 cos12dec 11914 dvdslelemd 11988 divalglemnn 12062 divalglemeuneg 12067 lcmgcdlem 12218 isprm5lem 12282 znege1 12319 sqrt2irraplemnn 12320 eulerthlemrprm 12370 eulerthlema 12371 4sqlem7 12525 ennnfonelemex 12574 strleund 12724 suplociccreex 14803 ivthinclemlm 14813 ivthinclemum 14814 ivthinclemlopn 14815 ivthinclemuopn 14817 ivthdec 14823 hoverlt1 14828 hovergt0 14829 dveflem 14905 efltlemlt 14950 sin0pilem1 14957 sin0pilem2 14958 coseq0negpitopi 15012 tangtx 15014 cosq34lt1 15026 cos02pilt1 15027 lgseisenlem1 15227 lgsquadlem1 15234 lgsquadlem2 15235 lgsquadlem3 15236 apdifflemf 15606 |
Copyright terms: Public domain | W3C validator |