![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mndmgm | GIF version |
Description: A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
Ref | Expression |
---|---|
mndmgm | ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndsgrp 12830 | . 2 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Smgrp) | |
2 | sgrpmgm 12820 | . 2 ⊢ (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2148 Mgmcmgm 12780 Smgrpcsgrp 12814 Mndcmnd 12825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5881 df-inn 8923 df-2 8981 df-ndx 12468 df-slot 12469 df-base 12471 df-plusg 12552 df-sgrp 12815 df-mnd 12826 |
This theorem is referenced by: mndcl 12832 mndplusf 12842 mndissubm 12874 grpissubg 13068 srg1zr 13208 ringmgm 13228 |
Copyright terms: Public domain | W3C validator |