ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgrpmgm GIF version

Theorem sgrpmgm 13314
Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Assertion
Ref Expression
sgrpmgm (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)

Proof of Theorem sgrpmgm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2206 . . 3 (+g𝑀) = (+g𝑀)
31, 2issgrp 13310 . 2 (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)∀𝑧 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧))))
43simplbi 274 1 (𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wral 2485  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Mgmcmgm 13261  Smgrpcsgrp 13308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-sgrp 13309
This theorem is referenced by:  sgrpcl  13316  mndmgm  13329  dfgrp2  13434  dfgrp3me  13507  mulgnndir  13562  mulgnnass  13568  rngcl  13781
  Copyright terms: Public domain W3C validator