ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndplusf GIF version

Theorem mndplusf 13452
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
Hypotheses
Ref Expression
mndplusf.1 𝐵 = (Base‘𝐺)
mndplusf.2 = (+𝑓𝐺)
Assertion
Ref Expression
mndplusf (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)

Proof of Theorem mndplusf
StepHypRef Expression
1 mndmgm 13441 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
2 mndplusf.1 . . 3 𝐵 = (Base‘𝐺)
3 mndplusf.2 . . 3 = (+𝑓𝐺)
42, 3mgmplusf 13385 . 2 (𝐺 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
51, 4syl 14 1 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200   × cxp 4714  wf 5310  cfv 5314  Basecbs 13018  +𝑓cplusf 13372  Mgmcmgm 13373  Mndcmnd 13435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-plusf 13374  df-mgm 13375  df-sgrp 13421  df-mnd 13436
This theorem is referenced by:  mndpfo  13457  grpplusf  13534
  Copyright terms: Public domain W3C validator