| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndsgrp | GIF version | ||
| Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndsgrp | ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2209 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | ismnddef 13417 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑒(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)𝑒) = 𝑥))) |
| 4 | 3 | simplbi 274 | 1 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 Smgrpcsgrp 13400 Mndcmnd 13415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mnd 13416 |
| This theorem is referenced by: mndmgm 13421 mndass 13423 grpsgrp 13524 mulgnn0dir 13655 mulgnn0ass 13661 ringrng 13965 |
| Copyright terms: Public domain | W3C validator |