Proof of Theorem divmuleqap
| Step | Hyp | Ref
| Expression |
| 1 | | divclap 8705 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℂ) |
| 2 | 1 | 3expb 1206 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ) |
| 3 | 2 | ad2ant2r 509 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 / 𝐶) ∈ ℂ) |
| 4 | | divclap 8705 |
. . . . 5
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐵 / 𝐷) ∈ ℂ) |
| 5 | 4 | 3expb 1206 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐵 / 𝐷) ∈ ℂ) |
| 6 | 5 | ad2ant2l 508 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 / 𝐷) ∈ ℂ) |
| 7 | | mulcl 8006 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ) |
| 8 | 7 | ad2ant2r 509 |
. . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ) |
| 9 | | mulap0 8681 |
. . . . 5
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0) |
| 10 | 8, 9 | jca 306 |
. . . 4
⊢ (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) |
| 11 | 10 | adantl 277 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) |
| 12 | | mulcanap2 8693 |
. . 3
⊢ (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ ∧ ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷))) |
| 13 | 3, 6, 11, 12 | syl3anc 1249 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷))) |
| 14 | | simprll 537 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ) |
| 15 | | simprrl 539 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ) |
| 16 | 3, 14, 15 | mulassd 8050 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = ((𝐴 / 𝐶) · (𝐶 · 𝐷))) |
| 17 | | divcanap1 8708 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) |
| 18 | 17 | 3expb 1206 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) |
| 19 | 18 | ad2ant2r 509 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · 𝐶) = 𝐴) |
| 20 | 19 | oveq1d 5937 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = (𝐴 · 𝐷)) |
| 21 | 16, 20 | eqtr3d 2231 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐶 · 𝐷)) = (𝐴 · 𝐷)) |
| 22 | 14, 15 | mulcomd 8048 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) |
| 23 | 22 | oveq2d 5938 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐷 · 𝐶))) |
| 24 | 6, 15, 14 | mulassd 8050 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = ((𝐵 / 𝐷) · (𝐷 · 𝐶))) |
| 25 | | divcanap1 8708 |
. . . . . . 7
⊢ ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) |
| 26 | 25 | 3expb 1206 |
. . . . . 6
⊢ ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) |
| 27 | 26 | ad2ant2l 508 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · 𝐷) = 𝐵) |
| 28 | 27 | oveq1d 5937 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = (𝐵 · 𝐶)) |
| 29 | 23, 24, 28 | 3eqtr2d 2235 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = (𝐵 · 𝐶)) |
| 30 | 21, 29 | eqeq12d 2211 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) |
| 31 | 13, 30 | bitr3d 190 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) |