ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divmuleqap GIF version

Theorem divmuleqap 8797
Description: Cross-multiply in an equality of ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divmuleqap (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶)))

Proof of Theorem divmuleqap
StepHypRef Expression
1 divclap 8758 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐴 / 𝐶) ∈ ℂ)
213expb 1207 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 𝐶) ∈ ℂ)
32ad2ant2r 509 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐴 / 𝐶) ∈ ℂ)
4 divclap 8758 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → (𝐵 / 𝐷) ∈ ℂ)
543expb 1207 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐵 / 𝐷) ∈ ℂ)
65ad2ant2l 508 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐵 / 𝐷) ∈ ℂ)
7 mulcl 8059 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) ∈ ℂ)
87ad2ant2r 509 . . . . 5 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) ∈ ℂ)
9 mulap0 8734 . . . . 5 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → (𝐶 · 𝐷) # 0)
108, 9jca 306 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0))
1110adantl 277 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0))
12 mulcanap2 8746 . . 3 (((𝐴 / 𝐶) ∈ ℂ ∧ (𝐵 / 𝐷) ∈ ℂ ∧ ((𝐶 · 𝐷) ∈ ℂ ∧ (𝐶 · 𝐷) # 0)) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷)))
133, 6, 11, 12syl3anc 1250 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 / 𝐶) = (𝐵 / 𝐷)))
14 simprll 537 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐶 ∈ ℂ)
15 simprrl 539 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → 𝐷 ∈ ℂ)
163, 14, 15mulassd 8103 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = ((𝐴 / 𝐶) · (𝐶 · 𝐷)))
17 divcanap1 8761 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((𝐴 / 𝐶) · 𝐶) = 𝐴)
18173expb 1207 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) · 𝐶) = 𝐴)
1918ad2ant2r 509 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · 𝐶) = 𝐴)
2019oveq1d 5966 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · 𝐶) · 𝐷) = (𝐴 · 𝐷))
2116, 20eqtr3d 2241 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐶 · 𝐷)) = (𝐴 · 𝐷))
2214, 15mulcomd 8101 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
2322oveq2d 5967 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐷 · 𝐶)))
246, 15, 14mulassd 8103 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = ((𝐵 / 𝐷) · (𝐷 · 𝐶)))
25 divcanap1 8761 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 # 0) → ((𝐵 / 𝐷) · 𝐷) = 𝐵)
26253expb 1207 . . . . . 6 ((𝐵 ∈ ℂ ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐵 / 𝐷) · 𝐷) = 𝐵)
2726ad2ant2l 508 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · 𝐷) = 𝐵)
2827oveq1d 5966 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐵 / 𝐷) · 𝐷) · 𝐶) = (𝐵 · 𝐶))
2923, 24, 283eqtr2d 2245 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐵 / 𝐷) · (𝐶 · 𝐷)) = (𝐵 · 𝐶))
3021, 29eqeq12d 2221 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → (((𝐴 / 𝐶) · (𝐶 · 𝐷)) = ((𝐵 / 𝐷) · (𝐶 · 𝐷)) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶)))
3113, 30bitr3d 190 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930  0cc0 7932   · cmul 7937   # cap 8661   / cdiv 8752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-po 4347  df-iso 4348  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753
This theorem is referenced by:  divmuleqapd  8913  qtri3or  10390
  Copyright terms: Public domain W3C validator