| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulcanapd | GIF version | ||
| Description: Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| mulcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mulcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mulcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mulcand.4 | ⊢ (𝜑 → 𝐶 # 0) |
| Ref | Expression |
|---|---|
| mulcanapd | ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | mulcand.4 | . . . 4 ⊢ (𝜑 → 𝐶 # 0) | |
| 3 | recexap 8739 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) | |
| 4 | 1, 2, 3 | syl2anc 411 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) |
| 5 | oveq2 5962 | . . . 4 ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵))) | |
| 6 | simprl 529 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ) | |
| 7 | 1 | adantr 276 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ) |
| 8 | 6, 7 | mulcomd 8107 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥)) |
| 9 | simprr 531 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1) | |
| 10 | 8, 9 | eqtrd 2239 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1) |
| 11 | 10 | oveq1d 5969 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴)) |
| 12 | mulcand.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 13 | 12 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
| 14 | 6, 7, 13 | mulassd 8109 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴))) |
| 15 | 13 | mulid2d 8104 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
| 16 | 11, 14, 15 | 3eqtr3d 2247 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴) |
| 17 | 10 | oveq1d 5969 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵)) |
| 18 | mulcand.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 19 | 18 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ) |
| 20 | 6, 7, 19 | mulassd 8109 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵))) |
| 21 | 19 | mulid2d 8104 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵) |
| 22 | 17, 20, 21 | 3eqtr3d 2247 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵) |
| 23 | 16, 22 | eqeq12d 2221 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵)) |
| 24 | 5, 23 | imbitrid 154 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
| 25 | 4, 24 | rexlimddv 2629 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
| 26 | oveq2 5962 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) | |
| 27 | 25, 26 | impbid1 142 | 1 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4048 (class class class)co 5954 ℂcc 7936 0cc0 7938 1c1 7939 · cmul 7943 # cap 8667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 |
| This theorem is referenced by: mulcanap2d 8748 mulcanapad 8749 mulcanap 8751 div11ap 8786 eqneg 8818 dvdscmulr 12181 qredeq 12468 cncongr1 12475 lgseisenlem2 15598 |
| Copyright terms: Public domain | W3C validator |