ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcanapd GIF version

Theorem mulcanapd 8283
Description: Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.)
Hypotheses
Ref Expression
mulcand.1 (𝜑𝐴 ∈ ℂ)
mulcand.2 (𝜑𝐵 ∈ ℂ)
mulcand.3 (𝜑𝐶 ∈ ℂ)
mulcand.4 (𝜑𝐶 # 0)
Assertion
Ref Expression
mulcanapd (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem mulcanapd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
2 mulcand.4 . . . 4 (𝜑𝐶 # 0)
3 recexap 8275 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 406 . . 3 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
5 oveq2 5714 . . . 4 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
6 simprl 501 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
71adantr 272 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ)
86, 7mulcomd 7659 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥))
9 simprr 502 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1)
108, 9eqtrd 2132 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1)
1110oveq1d 5721 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
12 mulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1312adantr 272 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
146, 7, 13mulassd 7661 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
1513mulid2d 7656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴)
1611, 14, 153eqtr3d 2140 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
1710oveq1d 5721 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
18 mulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1918adantr 272 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
206, 7, 19mulassd 7661 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
2119mulid2d 7656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵)
2217, 20, 213eqtr3d 2140 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
2316, 22eqeq12d 2114 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵))
245, 23syl5ib 153 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
254, 24rexlimddv 2513 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
26 oveq2 5714 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
2725, 26impbid1 141 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wcel 1448  wrex 2376   class class class wbr 3875  (class class class)co 5706  cc 7498  0cc0 7500  1c1 7501   · cmul 7505   # cap 8209
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210
This theorem is referenced by:  mulcanap2d  8284  mulcanapad  8285  mulcanap  8287  div11ap  8321  eqneg  8353  dvdscmulr  11317  qredeq  11570  cncongr1  11577
  Copyright terms: Public domain W3C validator