ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 GIF version

Theorem modqmul1 10363
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a (𝜑𝐴 ∈ ℚ)
modqmul1.b (𝜑𝐵 ∈ ℚ)
modqmul1.c (𝜑𝐶 ∈ ℤ)
modqmul1.d (𝜑𝐷 ∈ ℚ)
modqmul1.dgt0 (𝜑 → 0 < 𝐷)
modqmul1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqmul1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqmul1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqmul1.d . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqmul1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 10310 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1238 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqmul1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 10310 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1238 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2192 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5876 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
1210, 11syl6bi 163 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
13 qcn 9623 . . . . . . . . . 10 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
143, 13syl 14 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
15 modqmul1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
1615zcnd 9365 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
174gt0ne0d 8459 . . . . . . . . . . . 12 (𝜑𝐷 ≠ 0)
18 qdivcl 9632 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
192, 3, 17, 18syl3anc 1238 . . . . . . . . . . 11 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2019flqcld 10263 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2120zcnd 9365 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2214, 16, 21mulassd 7971 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
2314, 16, 21mul32d 8100 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2422, 23eqtr3d 2212 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2524oveq2d 5885 . . . . . 6 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
26 qcn 9623 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
272, 26syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2814, 21mulcld 7968 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2927, 28, 16subdird 8362 . . . . . 6 (𝜑 → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
3025, 29eqtr4d 2213 . . . . 5 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
31 qdivcl 9632 . . . . . . . . . . . 12 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
327, 3, 17, 31syl3anc 1238 . . . . . . . . . . 11 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3332flqcld 10263 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3433zcnd 9365 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3514, 16, 34mulassd 7971 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3614, 16, 34mul32d 8100 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3735, 36eqtr3d 2212 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3837oveq2d 5885 . . . . . 6 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
39 qcn 9623 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
407, 39syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4114, 34mulcld 7968 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4240, 41, 16subdird 8362 . . . . . 6 (𝜑 → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4338, 42eqtr4d 2213 . . . . 5 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4430, 43eqeq12d 2192 . . . 4 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
4512, 44sylibrd 169 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
46 oveq1 5876 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
47 zq 9615 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
4815, 47syl 14 . . . . . . 7 (𝜑𝐶 ∈ ℚ)
49 qmulcl 9626 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
502, 48, 49syl2anc 411 . . . . . 6 (𝜑 → (𝐴 · 𝐶) ∈ ℚ)
5115, 20zmulcld 9370 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
52 modqcyc2 10346 . . . . . 6 ((((𝐴 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5350, 51, 3, 4, 52syl22anc 1239 . . . . 5 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
54 qmulcl 9626 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 · 𝐶) ∈ ℚ)
557, 48, 54syl2anc 411 . . . . . 6 (𝜑 → (𝐵 · 𝐶) ∈ ℚ)
5615, 33zmulcld 9370 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
57 modqcyc2 10346 . . . . . 6 ((((𝐵 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5855, 56, 3, 4, 57syl22anc 1239 . . . . 5 (𝜑 → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5953, 58eqeq12d 2192 . . . 4 (𝜑 → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6046, 59imbitrid 154 . . 3 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6145, 60syld 45 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
621, 61mpd 13 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802   · cmul 7807   < clt 7982  cmin 8118   / cdiv 8618  cz 9242  cq 9608  cfl 10254   mod cmo 10308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309
This theorem is referenced by:  modqmul12d  10364  modqnegd  10365  modqmulmod  10375  eulerthlema  12213  fermltl  12217  odzdvds  12228  lgsdir2lem4  14099  lgsdirprm  14102
  Copyright terms: Public domain W3C validator