ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 GIF version

Theorem modqmul1 10308
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a (𝜑𝐴 ∈ ℚ)
modqmul1.b (𝜑𝐵 ∈ ℚ)
modqmul1.c (𝜑𝐶 ∈ ℤ)
modqmul1.d (𝜑𝐷 ∈ ℚ)
modqmul1.dgt0 (𝜑 → 0 < 𝐷)
modqmul1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqmul1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqmul1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqmul1.d . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqmul1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 10255 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1228 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqmul1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 10255 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1228 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2180 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5848 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
1210, 11syl6bi 162 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
13 qcn 9568 . . . . . . . . . 10 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
143, 13syl 14 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
15 modqmul1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
1615zcnd 9310 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
174gt0ne0d 8406 . . . . . . . . . . . 12 (𝜑𝐷 ≠ 0)
18 qdivcl 9577 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
192, 3, 17, 18syl3anc 1228 . . . . . . . . . . 11 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2019flqcld 10208 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2120zcnd 9310 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2214, 16, 21mulassd 7918 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
2314, 16, 21mul32d 8047 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2422, 23eqtr3d 2200 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2524oveq2d 5857 . . . . . 6 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
26 qcn 9568 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
272, 26syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2814, 21mulcld 7915 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2927, 28, 16subdird 8309 . . . . . 6 (𝜑 → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
3025, 29eqtr4d 2201 . . . . 5 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
31 qdivcl 9577 . . . . . . . . . . . 12 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
327, 3, 17, 31syl3anc 1228 . . . . . . . . . . 11 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3332flqcld 10208 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3433zcnd 9310 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3514, 16, 34mulassd 7918 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3614, 16, 34mul32d 8047 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3735, 36eqtr3d 2200 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3837oveq2d 5857 . . . . . 6 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
39 qcn 9568 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
407, 39syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4114, 34mulcld 7915 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4240, 41, 16subdird 8309 . . . . . 6 (𝜑 → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4338, 42eqtr4d 2201 . . . . 5 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4430, 43eqeq12d 2180 . . . 4 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
4512, 44sylibrd 168 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
46 oveq1 5848 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
47 zq 9560 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
4815, 47syl 14 . . . . . . 7 (𝜑𝐶 ∈ ℚ)
49 qmulcl 9571 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
502, 48, 49syl2anc 409 . . . . . 6 (𝜑 → (𝐴 · 𝐶) ∈ ℚ)
5115, 20zmulcld 9315 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
52 modqcyc2 10291 . . . . . 6 ((((𝐴 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5350, 51, 3, 4, 52syl22anc 1229 . . . . 5 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
54 qmulcl 9571 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 · 𝐶) ∈ ℚ)
557, 48, 54syl2anc 409 . . . . . 6 (𝜑 → (𝐵 · 𝐶) ∈ ℚ)
5615, 33zmulcld 9315 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
57 modqcyc2 10291 . . . . . 6 ((((𝐵 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5855, 56, 3, 4, 57syl22anc 1229 . . . . 5 (𝜑 → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5953, 58eqeq12d 2180 . . . 4 (𝜑 → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6046, 59syl5ib 153 . . 3 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6145, 60syld 45 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
621, 61mpd 13 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  wne 2335   class class class wbr 3981  cfv 5187  (class class class)co 5841  cc 7747  0cc0 7749   · cmul 7754   < clt 7929  cmin 8065   / cdiv 8564  cz 9187  cq 9553  cfl 10199   mod cmo 10253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-po 4273  df-iso 4274  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-n0 9111  df-z 9188  df-q 9554  df-rp 9586  df-fl 10201  df-mod 10254
This theorem is referenced by:  modqmul12d  10309  modqnegd  10310  modqmulmod  10320  eulerthlema  12158  fermltl  12162  odzdvds  12173  lgsdir2lem4  13532  lgsdirprm  13535
  Copyright terms: Public domain W3C validator