ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 GIF version

Theorem modqmul1 10486
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a (𝜑𝐴 ∈ ℚ)
modqmul1.b (𝜑𝐵 ∈ ℚ)
modqmul1.c (𝜑𝐶 ∈ ℤ)
modqmul1.d (𝜑𝐷 ∈ ℚ)
modqmul1.dgt0 (𝜑 → 0 < 𝐷)
modqmul1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqmul1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqmul1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqmul1.d . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqmul1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 10433 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1249 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqmul1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 10433 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1249 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2211 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5932 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
1210, 11biimtrdi 163 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
13 qcn 9725 . . . . . . . . . 10 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
143, 13syl 14 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
15 modqmul1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
1615zcnd 9466 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
174gt0ne0d 8556 . . . . . . . . . . . 12 (𝜑𝐷 ≠ 0)
18 qdivcl 9734 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
192, 3, 17, 18syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2019flqcld 10384 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2120zcnd 9466 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2214, 16, 21mulassd 8067 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
2314, 16, 21mul32d 8196 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2422, 23eqtr3d 2231 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2524oveq2d 5941 . . . . . 6 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
26 qcn 9725 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
272, 26syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2814, 21mulcld 8064 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2927, 28, 16subdird 8458 . . . . . 6 (𝜑 → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
3025, 29eqtr4d 2232 . . . . 5 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
31 qdivcl 9734 . . . . . . . . . . . 12 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
327, 3, 17, 31syl3anc 1249 . . . . . . . . . . 11 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3332flqcld 10384 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3433zcnd 9466 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3514, 16, 34mulassd 8067 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3614, 16, 34mul32d 8196 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3735, 36eqtr3d 2231 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3837oveq2d 5941 . . . . . 6 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
39 qcn 9725 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
407, 39syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4114, 34mulcld 8064 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4240, 41, 16subdird 8458 . . . . . 6 (𝜑 → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4338, 42eqtr4d 2232 . . . . 5 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4430, 43eqeq12d 2211 . . . 4 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
4512, 44sylibrd 169 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
46 oveq1 5932 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
47 zq 9717 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
4815, 47syl 14 . . . . . . 7 (𝜑𝐶 ∈ ℚ)
49 qmulcl 9728 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
502, 48, 49syl2anc 411 . . . . . 6 (𝜑 → (𝐴 · 𝐶) ∈ ℚ)
5115, 20zmulcld 9471 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
52 modqcyc2 10469 . . . . . 6 ((((𝐴 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5350, 51, 3, 4, 52syl22anc 1250 . . . . 5 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
54 qmulcl 9728 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 · 𝐶) ∈ ℚ)
557, 48, 54syl2anc 411 . . . . . 6 (𝜑 → (𝐵 · 𝐶) ∈ ℚ)
5615, 33zmulcld 9471 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
57 modqcyc2 10469 . . . . . 6 ((((𝐵 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5855, 56, 3, 4, 57syl22anc 1250 . . . . 5 (𝜑 → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5953, 58eqeq12d 2211 . . . 4 (𝜑 → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6046, 59imbitrid 154 . . 3 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6145, 60syld 45 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
621, 61mpd 13 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896   · cmul 7901   < clt 8078  cmin 8214   / cdiv 8716  cz 9343  cq 9710  cfl 10375   mod cmo 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432
This theorem is referenced by:  modqmul12d  10487  modqnegd  10488  modqmulmod  10498  eulerthlema  12423  fermltl  12427  odzdvds  12439  lgsdir2lem4  15356  lgsdirprm  15359  gausslemma2d  15394
  Copyright terms: Public domain W3C validator