ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqmul1 GIF version

Theorem modqmul1 10539
Description: Multiplication property of the modulo operation. Note that the multiplier 𝐶 must be an integer. (Contributed by Jim Kingdon, 24-Oct-2021.)
Hypotheses
Ref Expression
modqmul1.a (𝜑𝐴 ∈ ℚ)
modqmul1.b (𝜑𝐵 ∈ ℚ)
modqmul1.c (𝜑𝐶 ∈ ℤ)
modqmul1.d (𝜑𝐷 ∈ ℚ)
modqmul1.dgt0 (𝜑 → 0 < 𝐷)
modqmul1.ab (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
Assertion
Ref Expression
modqmul1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))

Proof of Theorem modqmul1
StepHypRef Expression
1 modqmul1.ab . 2 (𝜑 → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
2 modqmul1.a . . . . . . 7 (𝜑𝐴 ∈ ℚ)
3 modqmul1.d . . . . . . 7 (𝜑𝐷 ∈ ℚ)
4 modqmul1.dgt0 . . . . . . 7 (𝜑 → 0 < 𝐷)
5 modqval 10486 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
62, 3, 4, 5syl3anc 1250 . . . . . 6 (𝜑 → (𝐴 mod 𝐷) = (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))))
7 modqmul1.b . . . . . . 7 (𝜑𝐵 ∈ ℚ)
8 modqval 10486 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
97, 3, 4, 8syl3anc 1250 . . . . . 6 (𝜑 → (𝐵 mod 𝐷) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))))
106, 9eqeq12d 2221 . . . . 5 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) ↔ (𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷))))))
11 oveq1 5963 . . . . 5 ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) = (𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
1210, 11biimtrdi 163 . . . 4 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
13 qcn 9770 . . . . . . . . . 10 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
143, 13syl 14 . . . . . . . . 9 (𝜑𝐷 ∈ ℂ)
15 modqmul1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
1615zcnd 9511 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
174gt0ne0d 8600 . . . . . . . . . . . 12 (𝜑𝐷 ≠ 0)
18 qdivcl 9779 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐴 / 𝐷) ∈ ℚ)
192, 3, 17, 18syl3anc 1250 . . . . . . . . . . 11 (𝜑 → (𝐴 / 𝐷) ∈ ℚ)
2019flqcld 10437 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℤ)
2120zcnd 9511 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 / 𝐷)) ∈ ℂ)
2214, 16, 21mulassd 8111 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))))
2314, 16, 21mul32d 8240 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐴 / 𝐷))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2422, 23eqtr3d 2241 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷)))) = ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶))
2524oveq2d 5972 . . . . . 6 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
26 qcn 9770 . . . . . . . 8 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
272, 26syl 14 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
2814, 21mulcld 8108 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐴 / 𝐷))) ∈ ℂ)
2927, 28, 16subdird 8502 . . . . . 6 (𝜑 → ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐴 · 𝐶) − ((𝐷 · (⌊‘(𝐴 / 𝐷))) · 𝐶)))
3025, 29eqtr4d 2242 . . . . 5 (𝜑 → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶))
31 qdivcl 9779 . . . . . . . . . . . 12 ((𝐵 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 𝐷 ≠ 0) → (𝐵 / 𝐷) ∈ ℚ)
327, 3, 17, 31syl3anc 1250 . . . . . . . . . . 11 (𝜑 → (𝐵 / 𝐷) ∈ ℚ)
3332flqcld 10437 . . . . . . . . . 10 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℤ)
3433zcnd 9511 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 / 𝐷)) ∈ ℂ)
3514, 16, 34mulassd 8111 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))
3614, 16, 34mul32d 8240 . . . . . . . 8 (𝜑 → ((𝐷 · 𝐶) · (⌊‘(𝐵 / 𝐷))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3735, 36eqtr3d 2241 . . . . . . 7 (𝜑 → (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))) = ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶))
3837oveq2d 5972 . . . . . 6 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
39 qcn 9770 . . . . . . . 8 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
407, 39syl 14 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4114, 34mulcld 8108 . . . . . . 7 (𝜑 → (𝐷 · (⌊‘(𝐵 / 𝐷))) ∈ ℂ)
4240, 41, 16subdird 8502 . . . . . 6 (𝜑 → ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶) = ((𝐵 · 𝐶) − ((𝐷 · (⌊‘(𝐵 / 𝐷))) · 𝐶)))
4338, 42eqtr4d 2242 . . . . 5 (𝜑 → ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶))
4430, 43eqeq12d 2221 . . . 4 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) ↔ ((𝐴 − (𝐷 · (⌊‘(𝐴 / 𝐷)))) · 𝐶) = ((𝐵 − (𝐷 · (⌊‘(𝐵 / 𝐷)))) · 𝐶)))
4512, 44sylibrd 169 . . 3 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷)))))))
46 oveq1 5963 . . . 4 (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷))
47 zq 9762 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
4815, 47syl 14 . . . . . . 7 (𝜑𝐶 ∈ ℚ)
49 qmulcl 9773 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐴 · 𝐶) ∈ ℚ)
502, 48, 49syl2anc 411 . . . . . 6 (𝜑 → (𝐴 · 𝐶) ∈ ℚ)
5115, 20zmulcld 9516 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ)
52 modqcyc2 10522 . . . . . 6 ((((𝐴 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐴 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
5350, 51, 3, 4, 52syl22anc 1251 . . . . 5 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = ((𝐴 · 𝐶) mod 𝐷))
54 qmulcl 9773 . . . . . . 7 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 · 𝐶) ∈ ℚ)
557, 48, 54syl2anc 411 . . . . . 6 (𝜑 → (𝐵 · 𝐶) ∈ ℚ)
5615, 33zmulcld 9516 . . . . . 6 (𝜑 → (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ)
57 modqcyc2 10522 . . . . . 6 ((((𝐵 · 𝐶) ∈ ℚ ∧ (𝐶 · (⌊‘(𝐵 / 𝐷))) ∈ ℤ) ∧ (𝐷 ∈ ℚ ∧ 0 < 𝐷)) → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5855, 56, 3, 4, 57syl22anc 1251 . . . . 5 (𝜑 → (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
5953, 58eqeq12d 2221 . . . 4 (𝜑 → ((((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) mod 𝐷) = (((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) mod 𝐷) ↔ ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6046, 59imbitrid 154 . . 3 (𝜑 → (((𝐴 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐴 / 𝐷))))) = ((𝐵 · 𝐶) − (𝐷 · (𝐶 · (⌊‘(𝐵 / 𝐷))))) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
6145, 60syld 45 . 2 (𝜑 → ((𝐴 mod 𝐷) = (𝐵 mod 𝐷) → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷)))
621, 61mpd 13 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐷) = ((𝐵 · 𝐶) mod 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377   class class class wbr 4050  cfv 5279  (class class class)co 5956  cc 7938  0cc0 7940   · cmul 7945   < clt 8122  cmin 8258   / cdiv 8760  cz 9387  cq 9755  cfl 10428   mod cmo 10484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-po 4350  df-iso 4351  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-n0 9311  df-z 9388  df-q 9756  df-rp 9791  df-fl 10430  df-mod 10485
This theorem is referenced by:  modqmul12d  10540  modqnegd  10541  modqmulmod  10551  eulerthlema  12622  fermltl  12626  odzdvds  12638  lgsdir2lem4  15578  lgsdirprm  15581  gausslemma2d  15616
  Copyright terms: Public domain W3C validator