ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 GIF version

Theorem mulap0 8642
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)

Proof of Theorem mulap0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recexap 8641 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
21adantl 277 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
3 simpllr 534 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 # 0)
4 simplll 533 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
5 simplrl 535 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
6 simprl 529 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
74, 5, 6mulassd 8012 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
8 simprr 531 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
98oveq2d 5913 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
104mulridd 8005 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴)
117, 9, 103eqtrd 2226 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = 𝐴)
126mul02d 8380 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (0 · 𝑥) = 0)
133, 11, 123brtr4d 4050 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥))
144, 5mulcld 8009 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
15 0cnd 7981 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 0 ∈ ℂ)
16 mulext1 8600 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1714, 15, 6, 16syl3anc 1249 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1813, 17mpd 13 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) # 0)
192, 18rexlimddv 2612 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wrex 2469   class class class wbr 4018  (class class class)co 5897  cc 7840  0cc0 7842  1c1 7843   · cmul 7847   # cap 8569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570
This theorem is referenced by:  mulap0b  8643  mulap0i  8644  mulap0d  8646  divmuldivap  8700  divdivdivap  8701  divmuleqap  8705  divadddivap  8715  conjmulap  8717  expcl2lemap  10566  expclzaplem  10578  lgsne0  14917
  Copyright terms: Public domain W3C validator