ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 GIF version

Theorem mulap0 8375
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)

Proof of Theorem mulap0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recexap 8374 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
21adantl 273 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
3 simpllr 506 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 # 0)
4 simplll 505 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
5 simplrl 507 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
6 simprl 503 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
74, 5, 6mulassd 7753 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
8 simprr 504 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
98oveq2d 5756 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
104mulid1d 7747 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴)
117, 9, 103eqtrd 2152 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = 𝐴)
126mul02d 8118 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (0 · 𝑥) = 0)
133, 11, 123brtr4d 3928 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥))
144, 5mulcld 7750 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
15 0cnd 7723 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 0 ∈ ℂ)
16 mulext1 8337 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1714, 15, 6, 16syl3anc 1199 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1813, 17mpd 13 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) # 0)
192, 18rexlimddv 2529 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wrex 2392   class class class wbr 3897  (class class class)co 5740  cc 7582  0cc0 7584  1c1 7585   · cmul 7589   # cap 8306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-po 4186  df-iso 4187  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307
This theorem is referenced by:  mulap0b  8376  mulap0i  8377  mulap0d  8379  divmuldivap  8432  divdivdivap  8433  divmuleqap  8437  divadddivap  8447  conjmulap  8449  expcl2lemap  10245  expclzaplem  10257
  Copyright terms: Public domain W3C validator