ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulap0 GIF version

Theorem mulap0 8551
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.)
Assertion
Ref Expression
mulap0 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)

Proof of Theorem mulap0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 recexap 8550 . . 3 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
21adantl 275 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1)
3 simpllr 524 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 # 0)
4 simplll 523 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
5 simplrl 525 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
6 simprl 521 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
74, 5, 6mulassd 7922 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥)))
8 simprr 522 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1)
98oveq2d 5858 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1))
104mulid1d 7916 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴)
117, 9, 103eqtrd 2202 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = 𝐴)
126mul02d 8290 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (0 · 𝑥) = 0)
133, 11, 123brtr4d 4014 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥))
144, 5mulcld 7919 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) ∈ ℂ)
15 0cnd 7892 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 0 ∈ ℂ)
16 mulext1 8510 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1714, 15, 6, 16syl3anc 1228 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0))
1813, 17mpd 13 . 2 ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) # 0)
192, 18rexlimddv 2588 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   · cmul 7758   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  mulap0b  8552  mulap0i  8553  mulap0d  8555  divmuldivap  8608  divdivdivap  8609  divmuleqap  8613  divadddivap  8623  conjmulap  8625  expcl2lemap  10467  expclzaplem  10479  lgsne0  13589
  Copyright terms: Public domain W3C validator