Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulap0 | GIF version |
Description: The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.) |
Ref | Expression |
---|---|
mulap0 | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexap 8550 | . . 3 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1) | |
2 | 1 | adantl 275 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 1) |
3 | simpllr 524 | . . . 4 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 # 0) | |
4 | simplll 523 | . . . . . 6 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐴 ∈ ℂ) | |
5 | simplrl 525 | . . . . . 6 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝐵 ∈ ℂ) | |
6 | simprl 521 | . . . . . 6 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 𝑥 ∈ ℂ) | |
7 | 4, 5, 6 | mulassd 7922 | . . . . 5 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = (𝐴 · (𝐵 · 𝑥))) |
8 | simprr 522 | . . . . . 6 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐵 · 𝑥) = 1) | |
9 | 8 | oveq2d 5858 | . . . . 5 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · (𝐵 · 𝑥)) = (𝐴 · 1)) |
10 | 4 | mulid1d 7916 | . . . . 5 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 1) = 𝐴) |
11 | 7, 9, 10 | 3eqtrd 2202 | . . . 4 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) = 𝐴) |
12 | 6 | mul02d 8290 | . . . 4 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (0 · 𝑥) = 0) |
13 | 3, 11, 12 | 3brtr4d 4014 | . . 3 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → ((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥)) |
14 | 4, 5 | mulcld 7919 | . . . 4 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) ∈ ℂ) |
15 | 0cnd 7892 | . . . 4 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → 0 ∈ ℂ) | |
16 | mulext1 8510 | . . . 4 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0)) | |
17 | 14, 15, 6, 16 | syl3anc 1228 | . . 3 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (((𝐴 · 𝐵) · 𝑥) # (0 · 𝑥) → (𝐴 · 𝐵) # 0)) |
18 | 13, 17 | mpd 13 | . 2 ⊢ ((((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ (𝑥 ∈ ℂ ∧ (𝐵 · 𝑥) = 1)) → (𝐴 · 𝐵) # 0) |
19 | 2, 18 | rexlimddv 2588 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 · cmul 7758 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: mulap0b 8552 mulap0i 8553 mulap0d 8555 divmuldivap 8608 divdivdivap 8609 divmuleqap 8613 divadddivap 8623 conjmulap 8625 expcl2lemap 10467 expclzaplem 10479 lgsne0 13589 |
Copyright terms: Public domain | W3C validator |