![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divdivap2 | GIF version |
Description: Division by a fraction. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
divdivap2 | ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7951 | . . . . 5 ⊢ 1 ∈ ℂ | |
2 | 1ap0 8595 | . . . . 5 ⊢ 1 # 0 | |
3 | 1, 2 | pm3.2i 272 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 # 0) |
4 | divdivdivap 8718 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 # 0)) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵))) | |
5 | 3, 4 | mpanl2 435 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵))) |
6 | 5 | 3impb 1201 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵))) |
7 | div1 8708 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | |
8 | 7 | 3ad2ant1 1020 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / 1) = 𝐴) |
9 | 8 | oveq1d 5921 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = (𝐴 / (𝐵 / 𝐶))) |
10 | mullid 8003 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
11 | 10 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 · 𝐵) = 𝐵) |
12 | 11 | 3adant3 1019 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (1 · 𝐵) = 𝐵) |
13 | 12 | oveq2d 5922 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐶) / (1 · 𝐵)) = ((𝐴 · 𝐶) / 𝐵)) |
14 | 6, 9, 13 | 3eqtr3d 2230 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4025 (class class class)co 5906 ℂcc 7856 0cc0 7858 1c1 7859 · cmul 7863 # cap 8586 / cdiv 8677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-mulrcl 7957 ax-addcom 7958 ax-mulcom 7959 ax-addass 7960 ax-mulass 7961 ax-distr 7962 ax-i2m1 7963 ax-0lt1 7964 ax-1rid 7965 ax-0id 7966 ax-rnegex 7967 ax-precex 7968 ax-cnre 7969 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-apti 7973 ax-pre-ltadd 7974 ax-pre-mulgt0 7975 ax-pre-mulext 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-br 4026 df-opab 4087 df-id 4318 df-po 4321 df-iso 4322 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-iota 5203 df-fun 5244 df-fv 5250 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-sub 8178 df-neg 8179 df-reap 8580 df-ap 8587 df-div 8678 |
This theorem is referenced by: divdivap2d 8828 |
Copyright terms: Public domain | W3C validator |