ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulid2i GIF version

Theorem mulid2i 7923
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
Hypothesis
Ref Expression
axi.1 𝐴 ∈ ℂ
Assertion
Ref Expression
mulid2i (1 · 𝐴) = 𝐴

Proof of Theorem mulid2i
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 mulid2 7918 . 2 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
31, 2ax-mp 5 1 (1 · 𝐴) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  1c1 7775   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-mulcom 7875  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  halfpm6th  9098  div4p1lem1div2  9131  3halfnz  9309  sq10  10646  fac2  10665  efival  11695  ef01bndlem  11719  3dvdsdec  11824  3dvds2dec  11825  odd2np1lem  11831  m1expo  11859  m1exp1  11860  nno  11865  sin2pim  13528  cos2pim  13529  sincosq3sgn  13543  sincosq4sgn  13544  cosq23lt0  13548  tangtx  13553  sincosq1eq  13554  sincos4thpi  13555  sincos6thpi  13557  abssinper  13561  cosq34lt1  13565  lgsdir2lem1  13723  lgsdir2lem4  13726  lgsdir2lem5  13727  ex-fl  13760
  Copyright terms: Public domain W3C validator