![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2i | GIF version |
Description: Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mulid2i | ⊢ (1 · 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mulid2 7540 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (1 · 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7402 1c1 7405 · cmul 7409 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-resscn 7491 ax-1cn 7492 ax-icn 7494 ax-addcl 7495 ax-mulcl 7497 ax-mulcom 7500 ax-mulass 7502 ax-distr 7503 ax-1rid 7506 ax-cnre 7510 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-iota 4993 df-fv 5036 df-ov 5669 |
This theorem is referenced by: halfpm6th 8690 div4p1lem1div2 8723 3halfnz 8897 sq10 10175 fac2 10193 efival 11077 ef01bndlem 11101 3dvdsdec 11197 3dvds2dec 11198 odd2np1lem 11204 m1expo 11232 m1exp1 11233 nno 11238 ex-fl 11918 |
Copyright terms: Public domain | W3C validator |