![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulm1 | GIF version |
Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
mulm1 | ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7965 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulneg1 8414 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · 𝐴) = -(1 · 𝐴)) | |
3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -(1 · 𝐴)) |
4 | mullid 8017 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
5 | 4 | negeqd 8214 | . 2 ⊢ (𝐴 ∈ ℂ → -(1 · 𝐴) = -𝐴) |
6 | 3, 5 | eqtrd 2226 | 1 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 1c1 7873 · cmul 7877 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: mulm1i 8422 mulm1d 8429 div2negap 8754 demoivreALT 11917 sinmpi 14950 cosmpi 14951 sinppi 14952 cosppi 14953 rprelogbdiv 15089 lgsdir2lem4 15147 |
Copyright terms: Public domain | W3C validator |