![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulm1 | GIF version |
Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
mulm1 | โข (๐ด โ โ โ (-1 ยท ๐ด) = -๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7906 | . . 3 โข 1 โ โ | |
2 | mulneg1 8354 | . . 3 โข ((1 โ โ โง ๐ด โ โ) โ (-1 ยท ๐ด) = -(1 ยท ๐ด)) | |
3 | 1, 2 | mpan 424 | . 2 โข (๐ด โ โ โ (-1 ยท ๐ด) = -(1 ยท ๐ด)) |
4 | mullid 7957 | . . 3 โข (๐ด โ โ โ (1 ยท ๐ด) = ๐ด) | |
5 | 4 | negeqd 8154 | . 2 โข (๐ด โ โ โ -(1 ยท ๐ด) = -๐ด) |
6 | 3, 5 | eqtrd 2210 | 1 โข (๐ด โ โ โ (-1 ยท ๐ด) = -๐ด) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 1c1 7814 ยท cmul 7818 -cneg 8131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-setind 4538 ax-resscn 7905 ax-1cn 7906 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-sub 8132 df-neg 8133 |
This theorem is referenced by: mulm1i 8362 mulm1d 8369 div2negap 8694 demoivreALT 11783 sinmpi 14321 cosmpi 14322 sinppi 14323 cosppi 14324 rprelogbdiv 14460 lgsdir2lem4 14517 |
Copyright terms: Public domain | W3C validator |