ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulm1 GIF version

Theorem mulm1 8298
Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999.)
Assertion
Ref Expression
mulm1 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)

Proof of Theorem mulm1
StepHypRef Expression
1 ax-1cn 7846 . . 3 1 ∈ ℂ
2 mulneg1 8293 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · 𝐴) = -(1 · 𝐴))
31, 2mpan 421 . 2 (𝐴 ∈ ℂ → (-1 · 𝐴) = -(1 · 𝐴))
4 mulid2 7897 . . 3 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
54negeqd 8093 . 2 (𝐴 ∈ ℂ → -(1 · 𝐴) = -𝐴)
63, 5eqtrd 2198 1 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751  1c1 7754   · cmul 7758  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by:  mulm1i  8301  mulm1d  8308  div2negap  8631  demoivreALT  11714  sinmpi  13386  cosmpi  13387  sinppi  13388  cosppi  13389  rprelogbdiv  13525  lgsdir2lem4  13582
  Copyright terms: Public domain W3C validator