![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulm1 | GIF version |
Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
Ref | Expression |
---|---|
mulm1 | ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7638 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulneg1 8076 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · 𝐴) = -(1 · 𝐴)) | |
3 | 1, 2 | mpan 418 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -(1 · 𝐴)) |
4 | mulid2 7688 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
5 | 4 | negeqd 7880 | . 2 ⊢ (𝐴 ∈ ℂ → -(1 · 𝐴) = -𝐴) |
6 | 3, 5 | eqtrd 2147 | 1 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1314 ∈ wcel 1463 (class class class)co 5728 ℂcc 7545 1c1 7548 · cmul 7552 -cneg 7857 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-resscn 7637 ax-1cn 7638 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-sub 7858 df-neg 7859 |
This theorem is referenced by: mulm1i 8084 mulm1d 8091 div2negap 8408 demoivreALT 11330 |
Copyright terms: Public domain | W3C validator |