| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulm1 | GIF version | ||
| Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999.) |
| Ref | Expression |
|---|---|
| mulm1 | ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | mulneg1 8549 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-1 · 𝐴) = -(1 · 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . 2 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -(1 · 𝐴)) |
| 4 | mullid 8152 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
| 5 | 4 | negeqd 8349 | . 2 ⊢ (𝐴 ∈ ℂ → -(1 · 𝐴) = -𝐴) |
| 6 | 3, 5 | eqtrd 2262 | 1 ⊢ (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 -cneg 8326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-neg 8328 |
| This theorem is referenced by: mulm1i 8557 mulm1d 8564 div2negap 8890 demoivreALT 12293 sinmpi 15497 cosmpi 15498 sinppi 15499 cosppi 15500 rprelogbdiv 15639 lgsdir2lem4 15718 |
| Copyright terms: Public domain | W3C validator |