ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xblpnf GIF version

Theorem xblpnf 12568
Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xblpnf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))

Proof of Theorem xblpnf
StepHypRef Expression
1 pnfxr 7818 . . 3 +∞ ∈ ℝ*
2 elbl 12560 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
31, 2mp3an3 1304 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞)))
4 xmetcl 12521 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ∈ ℝ*)
5 xmetge0 12534 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → 0 ≤ (𝑃𝐷𝐴))
6 ge0nemnf 9607 . . . . . . . 8 (((𝑃𝐷𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝐴)) → (𝑃𝐷𝐴) ≠ -∞)
74, 5, 6syl2anc 408 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) ≠ -∞)
8 nmnfgt 9601 . . . . . . . 8 ((𝑃𝐷𝐴) ∈ ℝ* → (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) ≠ -∞))
94, 8syl 14 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (-∞ < (𝑃𝐷𝐴) ↔ (𝑃𝐷𝐴) ≠ -∞))
107, 9mpbird 166 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → -∞ < (𝑃𝐷𝐴))
1110biantrurd 303 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
12 xrrebnd 9602 . . . . . 6 ((𝑃𝐷𝐴) ∈ ℝ* → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
134, 12syl 14 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) ∈ ℝ ↔ (-∞ < (𝑃𝐷𝐴) ∧ (𝑃𝐷𝐴) < +∞)))
1411, 13bitr4d 190 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
15143expa 1181 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝐴𝑋) → ((𝑃𝐷𝐴) < +∞ ↔ (𝑃𝐷𝐴) ∈ ℝ))
1615pm5.32da 447 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝐴𝑋 ∧ (𝑃𝐷𝐴) < +∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
173, 16bitrd 187 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800  cle 7801  ∞Metcxmet 12149  ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-2 8779  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  blpnf  12569  xmetec  12606
  Copyright terms: Public domain W3C validator