ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgg GIF version

Theorem frecuzrdgg 10402
Description: Lemma for other theorems involving the the recursive definition generator on upper integers. Evaluating 𝑅 at a natural number gives an ordered pair whose first element is the mapping of that natural number via 𝐺. (Contributed by Jim Kingdon, 23-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgg.n (𝜑𝑁 ∈ ω)
frecuzrdgg.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgg (𝜑 → (1st ‘(𝑅𝑁)) = (𝐺𝑁))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem frecuzrdgg
Dummy variables 𝑧 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgg.n . 2 (𝜑𝑁 ∈ ω)
2 fveq2 5511 . . . . . 6 (𝑤 = ∅ → (𝑅𝑤) = (𝑅‘∅))
32fveq2d 5515 . . . . 5 (𝑤 = ∅ → (1st ‘(𝑅𝑤)) = (1st ‘(𝑅‘∅)))
4 fveq2 5511 . . . . 5 (𝑤 = ∅ → (𝐺𝑤) = (𝐺‘∅))
53, 4eqeq12d 2192 . . . 4 (𝑤 = ∅ → ((1st ‘(𝑅𝑤)) = (𝐺𝑤) ↔ (1st ‘(𝑅‘∅)) = (𝐺‘∅)))
65imbi2d 230 . . 3 (𝑤 = ∅ → ((𝜑 → (1st ‘(𝑅𝑤)) = (𝐺𝑤)) ↔ (𝜑 → (1st ‘(𝑅‘∅)) = (𝐺‘∅))))
7 fveq2 5511 . . . . . 6 (𝑤 = 𝑘 → (𝑅𝑤) = (𝑅𝑘))
87fveq2d 5515 . . . . 5 (𝑤 = 𝑘 → (1st ‘(𝑅𝑤)) = (1st ‘(𝑅𝑘)))
9 fveq2 5511 . . . . 5 (𝑤 = 𝑘 → (𝐺𝑤) = (𝐺𝑘))
108, 9eqeq12d 2192 . . . 4 (𝑤 = 𝑘 → ((1st ‘(𝑅𝑤)) = (𝐺𝑤) ↔ (1st ‘(𝑅𝑘)) = (𝐺𝑘)))
1110imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (1st ‘(𝑅𝑤)) = (𝐺𝑤)) ↔ (𝜑 → (1st ‘(𝑅𝑘)) = (𝐺𝑘))))
12 fveq2 5511 . . . . . 6 (𝑤 = suc 𝑘 → (𝑅𝑤) = (𝑅‘suc 𝑘))
1312fveq2d 5515 . . . . 5 (𝑤 = suc 𝑘 → (1st ‘(𝑅𝑤)) = (1st ‘(𝑅‘suc 𝑘)))
14 fveq2 5511 . . . . 5 (𝑤 = suc 𝑘 → (𝐺𝑤) = (𝐺‘suc 𝑘))
1513, 14eqeq12d 2192 . . . 4 (𝑤 = suc 𝑘 → ((1st ‘(𝑅𝑤)) = (𝐺𝑤) ↔ (1st ‘(𝑅‘suc 𝑘)) = (𝐺‘suc 𝑘)))
1615imbi2d 230 . . 3 (𝑤 = suc 𝑘 → ((𝜑 → (1st ‘(𝑅𝑤)) = (𝐺𝑤)) ↔ (𝜑 → (1st ‘(𝑅‘suc 𝑘)) = (𝐺‘suc 𝑘))))
17 fveq2 5511 . . . . . 6 (𝑤 = 𝑁 → (𝑅𝑤) = (𝑅𝑁))
1817fveq2d 5515 . . . . 5 (𝑤 = 𝑁 → (1st ‘(𝑅𝑤)) = (1st ‘(𝑅𝑁)))
19 fveq2 5511 . . . . 5 (𝑤 = 𝑁 → (𝐺𝑤) = (𝐺𝑁))
2018, 19eqeq12d 2192 . . . 4 (𝑤 = 𝑁 → ((1st ‘(𝑅𝑤)) = (𝐺𝑤) ↔ (1st ‘(𝑅𝑁)) = (𝐺𝑁)))
2120imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (1st ‘(𝑅𝑤)) = (𝐺𝑤)) ↔ (𝜑 → (1st ‘(𝑅𝑁)) = (𝐺𝑁))))
22 frecuzrdgrclt.c . . . . 5 (𝜑𝐶 ∈ ℤ)
23 frecuzrdgrclt.a . . . . 5 (𝜑𝐴𝑆)
24 op1stg 6145 . . . . 5 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → (1st ‘⟨𝐶, 𝐴⟩) = 𝐶)
2522, 23, 24syl2anc 411 . . . 4 (𝜑 → (1st ‘⟨𝐶, 𝐴⟩) = 𝐶)
26 frecuzrdgrclt.r . . . . . . 7 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
2726fveq1i 5512 . . . . . 6 (𝑅‘∅) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅)
28 opexg 4225 . . . . . . . 8 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ V)
29 frec0g 6392 . . . . . . . 8 (⟨𝐶, 𝐴⟩ ∈ V → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3028, 29syl 14 . . . . . . 7 ((𝐶 ∈ ℤ ∧ 𝐴𝑆) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3122, 23, 30syl2anc 411 . . . . . 6 (𝜑 → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘∅) = ⟨𝐶, 𝐴⟩)
3227, 31eqtrid 2222 . . . . 5 (𝜑 → (𝑅‘∅) = ⟨𝐶, 𝐴⟩)
3332fveq2d 5515 . . . 4 (𝜑 → (1st ‘(𝑅‘∅)) = (1st ‘⟨𝐶, 𝐴⟩))
34 frecuzrdgg.g . . . . 5 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
3522, 34frec2uz0d 10385 . . . 4 (𝜑 → (𝐺‘∅) = 𝐶)
3625, 33, 353eqtr4d 2220 . . 3 (𝜑 → (1st ‘(𝑅‘∅)) = (𝐺‘∅))
3722, 34frec2uzf1od 10392 . . . . . . . . . . 11 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
38 f1of 5457 . . . . . . . . . . 11 (𝐺:ω–1-1-onto→(ℤ𝐶) → 𝐺:ω⟶(ℤ𝐶))
3937, 38syl 14 . . . . . . . . . 10 (𝜑𝐺:ω⟶(ℤ𝐶))
4039ad2antlr 489 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → 𝐺:ω⟶(ℤ𝐶))
41 simpll 527 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → 𝑘 ∈ ω)
4240, 41ffvelcdmd 5648 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝐺𝑘) ∈ (ℤ𝐶))
43 peano2uz 9572 . . . . . . . 8 ((𝐺𝑘) ∈ (ℤ𝐶) → ((𝐺𝑘) + 1) ∈ (ℤ𝐶))
4442, 43syl 14 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝐺𝑘) + 1) ∈ (ℤ𝐶))
45 oveq2 5877 . . . . . . . . 9 (𝑦 = (2nd ‘(𝑅𝑘)) → ((𝐺𝑘)𝐹𝑦) = ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘))))
4645eleq1d 2246 . . . . . . . 8 (𝑦 = (2nd ‘(𝑅𝑘)) → (((𝐺𝑘)𝐹𝑦) ∈ 𝑆 ↔ ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘))) ∈ 𝑆))
47 oveq1 5876 . . . . . . . . . . 11 (𝑥 = (𝐺𝑘) → (𝑥𝐹𝑦) = ((𝐺𝑘)𝐹𝑦))
4847eleq1d 2246 . . . . . . . . . 10 (𝑥 = (𝐺𝑘) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((𝐺𝑘)𝐹𝑦) ∈ 𝑆))
4948ralbidv 2477 . . . . . . . . 9 (𝑥 = (𝐺𝑘) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((𝐺𝑘)𝐹𝑦) ∈ 𝑆))
50 frecuzrdgrclt.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5150ralrimivva 2559 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
5251ad2antlr 489 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
5349, 52, 42rspcdva 2846 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ∀𝑦𝑆 ((𝐺𝑘)𝐹𝑦) ∈ 𝑆)
54 frecuzrdgrclt.t . . . . . . . . . . . 12 (𝜑𝑆𝑇)
5522, 23, 54, 50, 26frecuzrdgrclt 10401 . . . . . . . . . . 11 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
5655ad2antlr 489 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → 𝑅:ω⟶((ℤ𝐶) × 𝑆))
5756, 41ffvelcdmd 5648 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅𝑘) ∈ ((ℤ𝐶) × 𝑆))
58 xp2nd 6161 . . . . . . . . 9 ((𝑅𝑘) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅𝑘)) ∈ 𝑆)
5957, 58syl 14 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (2nd ‘(𝑅𝑘)) ∈ 𝑆)
6046, 53, 59rspcdva 2846 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘))) ∈ 𝑆)
61 op1stg 6145 . . . . . . 7 ((((𝐺𝑘) + 1) ∈ (ℤ𝐶) ∧ ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘))) ∈ 𝑆) → (1st ‘⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩) = ((𝐺𝑘) + 1))
6244, 60, 61syl2anc 411 . . . . . 6 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (1st ‘⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩) = ((𝐺𝑘) + 1))
63 1st2nd2 6170 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6463adantl 277 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
6564fveq2d 5515 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩))
66 df-ov 5872 . . . . . . . . . . . . . . . 16 ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩)
67 xp1st 6160 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (1st𝑧) ∈ (ℤ𝐶))
6867adantl 277 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (1st𝑧) ∈ (ℤ𝐶))
6954ad3antlr 493 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → 𝑆𝑇)
70 xp2nd 6161 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((ℤ𝐶) × 𝑆) → (2nd𝑧) ∈ 𝑆)
7170adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑆)
7269, 71sseldd 3156 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → (2nd𝑧) ∈ 𝑇)
73 peano2uz 9572 . . . . . . . . . . . . . . . . . . 19 ((1st𝑧) ∈ (ℤ𝐶) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
7468, 73syl 14 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧) + 1) ∈ (ℤ𝐶))
75 oveq2 5877 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (2nd𝑧) → ((1st𝑧)𝐹𝑦) = ((1st𝑧)𝐹(2nd𝑧)))
7675eleq1d 2246 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (2nd𝑧) → (((1st𝑧)𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆))
77 oveq1 5876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (1st𝑧) → (𝑥𝐹𝑦) = ((1st𝑧)𝐹𝑦))
7877eleq1d 2246 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (1st𝑧) → ((𝑥𝐹𝑦) ∈ 𝑆 ↔ ((1st𝑧)𝐹𝑦) ∈ 𝑆))
7978ralbidv 2477 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (1st𝑧) → (∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆))
8051ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑥 ∈ (ℤ𝐶)∀𝑦𝑆 (𝑥𝐹𝑦) ∈ 𝑆)
8179, 80, 68rspcdva 2846 . . . . . . . . . . . . . . . . . . 19 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ∀𝑦𝑆 ((1st𝑧)𝐹𝑦) ∈ 𝑆)
8276, 81, 71rspcdva 2846 . . . . . . . . . . . . . . . . . 18 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆)
83 opelxpi 4655 . . . . . . . . . . . . . . . . . 18 ((((1st𝑧) + 1) ∈ (ℤ𝐶) ∧ ((1st𝑧)𝐹(2nd𝑧)) ∈ 𝑆) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
8474, 82, 83syl2anc 411 . . . . . . . . . . . . . . . . 17 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆))
85 oveq1 5876 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1st𝑧) → (𝑥 + 1) = ((1st𝑧) + 1))
8685, 77opeq12d 3784 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1st𝑧) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩)
8775opeq2d 3783 . . . . . . . . . . . . . . . . . 18 (𝑦 = (2nd𝑧) → ⟨((1st𝑧) + 1), ((1st𝑧)𝐹𝑦)⟩ = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
88 eqid 2177 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)
8986, 87, 88ovmpog 6003 . . . . . . . . . . . . . . . . 17 (((1st𝑧) ∈ (ℤ𝐶) ∧ (2nd𝑧) ∈ 𝑇 ∧ ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
9068, 72, 84, 89syl3anc 1238 . . . . . . . . . . . . . . . 16 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((1st𝑧)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd𝑧)) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
9166, 90eqtr3id 2224 . . . . . . . . . . . . . . 15 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) = ⟨((1st𝑧) + 1), ((1st𝑧)𝐹(2nd𝑧))⟩)
9291, 84eqeltrd 2254 . . . . . . . . . . . . . 14 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st𝑧), (2nd𝑧)⟩) ∈ ((ℤ𝐶) × 𝑆))
9365, 92eqeltrd 2254 . . . . . . . . . . . . 13 ((((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) ∧ 𝑧 ∈ ((ℤ𝐶) × 𝑆)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
9493ralrimiva 2550 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆))
95 uzid 9531 . . . . . . . . . . . . . . 15 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
9622, 95syl 14 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ (ℤ𝐶))
97 opelxpi 4655 . . . . . . . . . . . . . 14 ((𝐶 ∈ (ℤ𝐶) ∧ 𝐴𝑆) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
9896, 23, 97syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
9998ad2antlr 489 . . . . . . . . . . . 12 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆))
100 frecsuc 6402 . . . . . . . . . . . 12 ((∀𝑧 ∈ ((ℤ𝐶) × 𝑆)((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘𝑧) ∈ ((ℤ𝐶) × 𝑆) ∧ ⟨𝐶, 𝐴⟩ ∈ ((ℤ𝐶) × 𝑆) ∧ 𝑘 ∈ ω) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑘)))
10194, 99, 41, 100syl3anc 1238 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑘) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑘)))
10226fveq1i 5512 . . . . . . . . . . 11 (𝑅‘suc 𝑘) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘suc 𝑘)
10326fveq1i 5512 . . . . . . . . . . . 12 (𝑅𝑘) = (frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑘)
104103fveq2i 5514 . . . . . . . . . . 11 ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)‘𝑘))
105101, 102, 1043eqtr4g 2235 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑘)))
106 1st2nd2 6170 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ ((ℤ𝐶) × 𝑆) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
10757, 106syl 14 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅𝑘) = ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩)
108107fveq2d 5515 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅𝑘)) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
109105, 108eqtrd 2210 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩))
110 simpr 110 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (1st ‘(𝑅𝑘)) = (𝐺𝑘))
111110opeq1d 3782 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩ = ⟨(𝐺𝑘), (2nd ‘(𝑅𝑘))⟩)
112111fveq2d 5515 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(1st ‘(𝑅𝑘)), (2nd ‘(𝑅𝑘))⟩) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑘), (2nd ‘(𝑅𝑘))⟩))
113109, 112eqtrd 2210 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅‘suc 𝑘) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑘), (2nd ‘(𝑅𝑘))⟩))
114 df-ov 5872 . . . . . . . . 9 ((𝐺𝑘)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑘))) = ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑘), (2nd ‘(𝑅𝑘))⟩)
11554ad2antlr 489 . . . . . . . . . . 11 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → 𝑆𝑇)
116115, 59sseldd 3156 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (2nd ‘(𝑅𝑘)) ∈ 𝑇)
117 opelxpi 4655 . . . . . . . . . . 11 ((((𝐺𝑘) + 1) ∈ (ℤ𝐶) ∧ ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘))) ∈ 𝑆) → ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝐶) × 𝑆))
11844, 60, 117syl2anc 411 . . . . . . . . . 10 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝐶) × 𝑆))
119 oveq1 5876 . . . . . . . . . . . 12 (𝑥 = (𝐺𝑘) → (𝑥 + 1) = ((𝐺𝑘) + 1))
120119, 47opeq12d 3784 . . . . . . . . . . 11 (𝑥 = (𝐺𝑘) → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹𝑦)⟩)
12145opeq2d 3783 . . . . . . . . . . 11 (𝑦 = (2nd ‘(𝑅𝑘)) → ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹𝑦)⟩ = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩)
122120, 121, 88ovmpog 6003 . . . . . . . . . 10 (((𝐺𝑘) ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅𝑘)) ∈ 𝑇 ∧ ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩ ∈ ((ℤ𝐶) × 𝑆)) → ((𝐺𝑘)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩)
12342, 116, 118, 122syl3anc 1238 . . . . . . . . 9 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝐺𝑘)(𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅𝑘))) = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩)
124114, 123eqtr3id 2224 . . . . . . . 8 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → ((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺𝑘), (2nd ‘(𝑅𝑘))⟩) = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩)
125113, 124eqtrd 2210 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝑅‘suc 𝑘) = ⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩)
126125fveq2d 5515 . . . . . 6 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (1st ‘(𝑅‘suc 𝑘)) = (1st ‘⟨((𝐺𝑘) + 1), ((𝐺𝑘)𝐹(2nd ‘(𝑅𝑘)))⟩))
12722ad2antlr 489 . . . . . . 7 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → 𝐶 ∈ ℤ)
128127, 34, 41frec2uzsucd 10387 . . . . . 6 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
12962, 126, 1283eqtr4d 2220 . . . . 5 (((𝑘 ∈ ω ∧ 𝜑) ∧ (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (1st ‘(𝑅‘suc 𝑘)) = (𝐺‘suc 𝑘))
130129exp31 364 . . . 4 (𝑘 ∈ ω → (𝜑 → ((1st ‘(𝑅𝑘)) = (𝐺𝑘) → (1st ‘(𝑅‘suc 𝑘)) = (𝐺‘suc 𝑘))))
131130a2d 26 . . 3 (𝑘 ∈ ω → ((𝜑 → (1st ‘(𝑅𝑘)) = (𝐺𝑘)) → (𝜑 → (1st ‘(𝑅‘suc 𝑘)) = (𝐺‘suc 𝑘))))
1326, 11, 16, 21, 36, 131finds 4596 . 2 (𝑁 ∈ ω → (𝜑 → (1st ‘(𝑅𝑁)) = (𝐺𝑁)))
1331, 132mpcom 36 1 (𝜑 → (1st ‘(𝑅𝑁)) = (𝐺𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129  c0 3422  cop 3594  cmpt 4061  suc csuc 4362  ωcom 4586   × cxp 4621  wf 5208  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  cmpo 5871  1st c1st 6133  2nd c2nd 6134  freccfrec 6385  1c1 7803   + caddc 7805  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518
This theorem is referenced by:  frecuzrdgdomlem  10403  frecuzrdgfunlem  10405  frecuzrdgsuctlem  10409
  Copyright terms: Public domain W3C validator