ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntopi GIF version

Theorem nntopi 8027
Description: Mapping from to N. (Contributed by Jim Kingdon, 13-Jul-2021.)
Hypothesis
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
nntopi (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑧,𝐴   𝑧,𝑁,𝑦,𝑥   𝑢,𝑙,𝑧,𝑦,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑢,𝑙)   𝑁(𝑢,𝑙)

Proof of Theorem nntopi
Dummy variables 𝑤 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nntopi.n . 2 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 eqeq2 2216 . . 3 (𝑤 = 1 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1))
32rexbidv 2508 . 2 (𝑤 = 1 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1))
4 eqeq2 2216 . . 3 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘))
54rexbidv 2508 . 2 (𝑤 = 𝑘 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘))
6 eqeq2 2216 . . 3 (𝑤 = (𝑘 + 1) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
76rexbidv 2508 . 2 (𝑤 = (𝑘 + 1) → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
8 eqeq2 2216 . . 3 (𝑤 = 𝐴 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴))
98rexbidv 2508 . 2 (𝑤 = 𝐴 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴))
10 1pi 7448 . . 3 1oN
11 eqid 2206 . . 3 1 = 1
12 opeq1 3825 . . . . . . . . . . . . . . . . 17 (𝑧 = 1o → ⟨𝑧, 1o⟩ = ⟨1o, 1o⟩)
1312eceq1d 6669 . . . . . . . . . . . . . . . 16 (𝑧 = 1o → [⟨𝑧, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
14 df-1nqqs 7484 . . . . . . . . . . . . . . . 16 1Q = [⟨1o, 1o⟩] ~Q
1513, 14eqtr4di 2257 . . . . . . . . . . . . . . 15 (𝑧 = 1o → [⟨𝑧, 1o⟩] ~Q = 1Q)
1615breq2d 4063 . . . . . . . . . . . . . 14 (𝑧 = 1o → (𝑙 <Q [⟨𝑧, 1o⟩] ~Q𝑙 <Q 1Q))
1716abbidv 2324 . . . . . . . . . . . . 13 (𝑧 = 1o → {𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q } = {𝑙𝑙 <Q 1Q})
1815breq1d 4061 . . . . . . . . . . . . . 14 (𝑧 = 1o → ([⟨𝑧, 1o⟩] ~Q <Q 𝑢 ↔ 1Q <Q 𝑢))
1918abbidv 2324 . . . . . . . . . . . . 13 (𝑧 = 1o → {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
2017, 19opeq12d 3833 . . . . . . . . . . . 12 (𝑧 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
21 df-i1p 7600 . . . . . . . . . . . 12 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
2220, 21eqtr4di 2257 . . . . . . . . . . 11 (𝑧 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ = 1P)
2322oveq1d 5972 . . . . . . . . . 10 (𝑧 = 1o → (⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (1P +P 1P))
2423opeq1d 3831 . . . . . . . . 9 (𝑧 = 1o → ⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩)
2524eceq1d 6669 . . . . . . . 8 (𝑧 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
26 df-1r 7865 . . . . . . . 8 1R = [⟨(1P +P 1P), 1P⟩] ~R
2725, 26eqtr4di 2257 . . . . . . 7 (𝑧 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R)
2827opeq1d 3831 . . . . . 6 (𝑧 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨1R, 0R⟩)
29 df-1 7953 . . . . . 6 1 = ⟨1R, 0R
3028, 29eqtr4di 2257 . . . . 5 (𝑧 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1)
3130eqeq1d 2215 . . . 4 (𝑧 = 1o → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1 ↔ 1 = 1))
3231rspcev 2881 . . 3 ((1oN ∧ 1 = 1) → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1)
3310, 11, 32mp2an 426 . 2 𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
34 simplr 528 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → 𝑧N)
35 addclpi 7460 . . . . . . 7 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) ∈ N)
3634, 10, 35sylancl 413 . . . . . 6 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (𝑧 +N 1o) ∈ N)
37 pitonnlem2 7980 . . . . . . . 8 (𝑧N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3834, 37syl 14 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
39 simpr 110 . . . . . . . 8 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
4039oveq1d 5972 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (𝑘 + 1))
4138, 40eqtr3d 2241 . . . . . 6 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
42 opeq1 3825 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑧 +N 1o) → ⟨𝑣, 1o⟩ = ⟨(𝑧 +N 1o), 1o⟩)
4342eceq1d 6669 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧 +N 1o) → [⟨𝑣, 1o⟩] ~Q = [⟨(𝑧 +N 1o), 1o⟩] ~Q )
4443breq2d 4063 . . . . . . . . . . . . . 14 (𝑣 = (𝑧 +N 1o) → (𝑙 <Q [⟨𝑣, 1o⟩] ~Q𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
4544abbidv 2324 . . . . . . . . . . . . 13 (𝑣 = (𝑧 +N 1o) → {𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q })
4643breq1d 4061 . . . . . . . . . . . . . 14 (𝑣 = (𝑧 +N 1o) → ([⟨𝑣, 1o⟩] ~Q <Q 𝑢 ↔ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢))
4746abbidv 2324 . . . . . . . . . . . . 13 (𝑣 = (𝑧 +N 1o) → {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢})
4845, 47opeq12d 3833 . . . . . . . . . . . 12 (𝑣 = (𝑧 +N 1o) → ⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩)
4948oveq1d 5972 . . . . . . . . . . 11 (𝑣 = (𝑧 +N 1o) → (⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
5049opeq1d 3831 . . . . . . . . . 10 (𝑣 = (𝑧 +N 1o) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
5150eceq1d 6669 . . . . . . . . 9 (𝑣 = (𝑧 +N 1o) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5251opeq1d 3831 . . . . . . . 8 (𝑣 = (𝑧 +N 1o) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5352eqeq1d 2215 . . . . . . 7 (𝑣 = (𝑧 +N 1o) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
5453rspcev 2881 . . . . . 6 (((𝑧 +N 1o) ∈ N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)) → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
5536, 41, 54syl2anc 411 . . . . 5 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
5655ex 115 . . . 4 ((𝑘𝑁𝑧N) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
5756rexlimdva 2624 . . 3 (𝑘𝑁 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
58 opeq1 3825 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ⟨𝑣, 1o⟩ = ⟨𝑧, 1o⟩)
5958eceq1d 6669 . . . . . . . . . . . 12 (𝑣 = 𝑧 → [⟨𝑣, 1o⟩] ~Q = [⟨𝑧, 1o⟩] ~Q )
6059breq2d 4063 . . . . . . . . . . 11 (𝑣 = 𝑧 → (𝑙 <Q [⟨𝑣, 1o⟩] ~Q𝑙 <Q [⟨𝑧, 1o⟩] ~Q ))
6160abbidv 2324 . . . . . . . . . 10 (𝑣 = 𝑧 → {𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q })
6259breq1d 4061 . . . . . . . . . . 11 (𝑣 = 𝑧 → ([⟨𝑣, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑧, 1o⟩] ~Q <Q 𝑢))
6362abbidv 2324 . . . . . . . . . 10 (𝑣 = 𝑧 → {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢})
6461, 63opeq12d 3833 . . . . . . . . 9 (𝑣 = 𝑧 → ⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩)
6564oveq1d 5972 . . . . . . . 8 (𝑣 = 𝑧 → (⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
6665opeq1d 3831 . . . . . . 7 (𝑣 = 𝑧 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
6766eceq1d 6669 . . . . . 6 (𝑣 = 𝑧 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
6867opeq1d 3831 . . . . 5 (𝑣 = 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6968eqeq1d 2215 . . . 4 (𝑣 = 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
7069cbvrexv 2740 . . 3 (∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
7157, 70imbitrdi 161 . 2 (𝑘𝑁 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
721, 3, 5, 7, 9, 33, 71nnindnn 8026 1 (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486  cop 3641   cint 3891   class class class wbr 4051  (class class class)co 5957  1oc1o 6508  [cec 6631  Ncnpi 7405   +N cpli 7406   ~Q ceq 7412  1Qc1q 7414   <Q cltq 7418  1Pc1p 7425   +P cpp 7426   ~R cer 7429  0Rc0r 7431  1Rc1r 7432  1c1 7946   + caddc 7948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-eprel 4344  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-1o 6515  df-2o 6516  df-oadd 6519  df-omul 6520  df-er 6633  df-ec 6635  df-qs 6639  df-ni 7437  df-pli 7438  df-mi 7439  df-lti 7440  df-plpq 7477  df-mpq 7478  df-enq 7480  df-nqqs 7481  df-plqqs 7482  df-mqqs 7483  df-1nqqs 7484  df-rq 7485  df-ltnqqs 7486  df-enq0 7557  df-nq0 7558  df-0nq0 7559  df-plq0 7560  df-mq0 7561  df-inp 7599  df-i1p 7600  df-iplp 7601  df-enr 7859  df-nr 7860  df-plr 7861  df-0r 7864  df-1r 7865  df-c 7951  df-1 7953  df-r 7955  df-add 7956
This theorem is referenced by:  axcaucvglemres  8032
  Copyright terms: Public domain W3C validator