ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntopi GIF version

Theorem nntopi 7797
Description: Mapping from to N. (Contributed by Jim Kingdon, 13-Jul-2021.)
Hypothesis
Ref Expression
nntopi.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Assertion
Ref Expression
nntopi (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑧,𝐴   𝑧,𝑁,𝑦,𝑥   𝑢,𝑙,𝑧,𝑦,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑢,𝑙)   𝑁(𝑢,𝑙)

Proof of Theorem nntopi
Dummy variables 𝑤 𝑘 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nntopi.n . 2 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 eqeq2 2167 . . 3 (𝑤 = 1 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1))
32rexbidv 2458 . 2 (𝑤 = 1 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1))
4 eqeq2 2167 . . 3 (𝑤 = 𝑘 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘))
54rexbidv 2458 . 2 (𝑤 = 𝑘 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘))
6 eqeq2 2167 . . 3 (𝑤 = (𝑘 + 1) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
76rexbidv 2458 . 2 (𝑤 = (𝑘 + 1) → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
8 eqeq2 2167 . . 3 (𝑤 = 𝐴 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴))
98rexbidv 2458 . 2 (𝑤 = 𝐴 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑤 ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴))
10 1pi 7218 . . 3 1oN
11 eqid 2157 . . 3 1 = 1
12 opeq1 3741 . . . . . . . . . . . . . . . . 17 (𝑧 = 1o → ⟨𝑧, 1o⟩ = ⟨1o, 1o⟩)
1312eceq1d 6509 . . . . . . . . . . . . . . . 16 (𝑧 = 1o → [⟨𝑧, 1o⟩] ~Q = [⟨1o, 1o⟩] ~Q )
14 df-1nqqs 7254 . . . . . . . . . . . . . . . 16 1Q = [⟨1o, 1o⟩] ~Q
1513, 14eqtr4di 2208 . . . . . . . . . . . . . . 15 (𝑧 = 1o → [⟨𝑧, 1o⟩] ~Q = 1Q)
1615breq2d 3977 . . . . . . . . . . . . . 14 (𝑧 = 1o → (𝑙 <Q [⟨𝑧, 1o⟩] ~Q𝑙 <Q 1Q))
1716abbidv 2275 . . . . . . . . . . . . 13 (𝑧 = 1o → {𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q } = {𝑙𝑙 <Q 1Q})
1815breq1d 3975 . . . . . . . . . . . . . 14 (𝑧 = 1o → ([⟨𝑧, 1o⟩] ~Q <Q 𝑢 ↔ 1Q <Q 𝑢))
1918abbidv 2275 . . . . . . . . . . . . 13 (𝑧 = 1o → {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ 1Q <Q 𝑢})
2017, 19opeq12d 3749 . . . . . . . . . . . 12 (𝑧 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩)
21 df-i1p 7370 . . . . . . . . . . . 12 1P = ⟨{𝑙𝑙 <Q 1Q}, {𝑢 ∣ 1Q <Q 𝑢}⟩
2220, 21eqtr4di 2208 . . . . . . . . . . 11 (𝑧 = 1o → ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ = 1P)
2322oveq1d 5833 . . . . . . . . . 10 (𝑧 = 1o → (⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (1P +P 1P))
2423opeq1d 3747 . . . . . . . . 9 (𝑧 = 1o → ⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(1P +P 1P), 1P⟩)
2524eceq1d 6509 . . . . . . . 8 (𝑧 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
26 df-1r 7635 . . . . . . . 8 1R = [⟨(1P +P 1P), 1P⟩] ~R
2725, 26eqtr4di 2208 . . . . . . 7 (𝑧 = 1o → [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = 1R)
2827opeq1d 3747 . . . . . 6 (𝑧 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨1R, 0R⟩)
29 df-1 7723 . . . . . 6 1 = ⟨1R, 0R
3028, 29eqtr4di 2208 . . . . 5 (𝑧 = 1o → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1)
3130eqeq1d 2166 . . . 4 (𝑧 = 1o → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1 ↔ 1 = 1))
3231rspcev 2816 . . 3 ((1oN ∧ 1 = 1) → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1)
3310, 11, 32mp2an 423 . 2 𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 1
34 simplr 520 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → 𝑧N)
35 addclpi 7230 . . . . . . 7 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) ∈ N)
3634, 10, 35sylancl 410 . . . . . 6 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (𝑧 +N 1o) ∈ N)
37 pitonnlem2 7750 . . . . . . . 8 (𝑧N → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
3834, 37syl 14 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
39 simpr 109 . . . . . . . 8 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘)
4039oveq1d 5833 . . . . . . 7 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ + 1) = (𝑘 + 1))
4138, 40eqtr3d 2192 . . . . . 6 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
42 opeq1 3741 . . . . . . . . . . . . . . . 16 (𝑣 = (𝑧 +N 1o) → ⟨𝑣, 1o⟩ = ⟨(𝑧 +N 1o), 1o⟩)
4342eceq1d 6509 . . . . . . . . . . . . . . 15 (𝑣 = (𝑧 +N 1o) → [⟨𝑣, 1o⟩] ~Q = [⟨(𝑧 +N 1o), 1o⟩] ~Q )
4443breq2d 3977 . . . . . . . . . . . . . 14 (𝑣 = (𝑧 +N 1o) → (𝑙 <Q [⟨𝑣, 1o⟩] ~Q𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
4544abbidv 2275 . . . . . . . . . . . . 13 (𝑣 = (𝑧 +N 1o) → {𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q })
4643breq1d 3975 . . . . . . . . . . . . . 14 (𝑣 = (𝑧 +N 1o) → ([⟨𝑣, 1o⟩] ~Q <Q 𝑢 ↔ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢))
4746abbidv 2275 . . . . . . . . . . . . 13 (𝑣 = (𝑧 +N 1o) → {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢})
4845, 47opeq12d 3749 . . . . . . . . . . . 12 (𝑣 = (𝑧 +N 1o) → ⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩)
4948oveq1d 5833 . . . . . . . . . . 11 (𝑣 = (𝑧 +N 1o) → (⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
5049opeq1d 3747 . . . . . . . . . 10 (𝑣 = (𝑧 +N 1o) → ⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
5150eceq1d 6509 . . . . . . . . 9 (𝑣 = (𝑧 +N 1o) → [⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5251opeq1d 3747 . . . . . . . 8 (𝑣 = (𝑧 +N 1o) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
5352eqeq1d 2166 . . . . . . 7 (𝑣 = (𝑧 +N 1o) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
5453rspcev 2816 . . . . . 6 (((𝑧 +N 1o) ∈ N ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q }, {𝑢 ∣ [⟨(𝑧 +N 1o), 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)) → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
5536, 41, 54syl2anc 409 . . . . 5 (((𝑘𝑁𝑧N) ∧ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘) → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
5655ex 114 . . . 4 ((𝑘𝑁𝑧N) → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
5756rexlimdva 2574 . . 3 (𝑘𝑁 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
58 opeq1 3741 . . . . . . . . . . . . 13 (𝑣 = 𝑧 → ⟨𝑣, 1o⟩ = ⟨𝑧, 1o⟩)
5958eceq1d 6509 . . . . . . . . . . . 12 (𝑣 = 𝑧 → [⟨𝑣, 1o⟩] ~Q = [⟨𝑧, 1o⟩] ~Q )
6059breq2d 3977 . . . . . . . . . . 11 (𝑣 = 𝑧 → (𝑙 <Q [⟨𝑣, 1o⟩] ~Q𝑙 <Q [⟨𝑧, 1o⟩] ~Q ))
6160abbidv 2275 . . . . . . . . . 10 (𝑣 = 𝑧 → {𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q })
6259breq1d 3975 . . . . . . . . . . 11 (𝑣 = 𝑧 → ([⟨𝑣, 1o⟩] ~Q <Q 𝑢 ↔ [⟨𝑧, 1o⟩] ~Q <Q 𝑢))
6362abbidv 2275 . . . . . . . . . 10 (𝑣 = 𝑧 → {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢} = {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢})
6461, 63opeq12d 3749 . . . . . . . . 9 (𝑣 = 𝑧 → ⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩)
6564oveq1d 5833 . . . . . . . 8 (𝑣 = 𝑧 → (⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P))
6665opeq1d 3747 . . . . . . 7 (𝑣 = 𝑧 → ⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩)
6766eceq1d 6509 . . . . . 6 (𝑣 = 𝑧 → [⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
6867opeq1d 3747 . . . . 5 (𝑣 = 𝑧 → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
6968eqeq1d 2166 . . . 4 (𝑣 = 𝑧 → (⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
7069cbvrexv 2681 . . 3 (∃𝑣N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑣, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑣, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1) ↔ ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1))
7157, 70syl6ib 160 . 2 (𝑘𝑁 → (∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝑘 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = (𝑘 + 1)))
721, 3, 5, 7, 9, 33, 71nnindnn 7796 1 (𝐴𝑁 → ∃𝑧N ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑧, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑧, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  {cab 2143  wral 2435  wrex 2436  cop 3563   cint 3807   class class class wbr 3965  (class class class)co 5818  1oc1o 6350  [cec 6471  Ncnpi 7175   +N cpli 7176   ~Q ceq 7182  1Qc1q 7184   <Q cltq 7188  1Pc1p 7195   +P cpp 7196   ~R cer 7199  0Rc0r 7201  1Rc1r 7202  1c1 7716   + caddc 7718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4248  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-1o 6357  df-2o 6358  df-oadd 6361  df-omul 6362  df-er 6473  df-ec 6475  df-qs 6479  df-ni 7207  df-pli 7208  df-mi 7209  df-lti 7210  df-plpq 7247  df-mpq 7248  df-enq 7250  df-nqqs 7251  df-plqqs 7252  df-mqqs 7253  df-1nqqs 7254  df-rq 7255  df-ltnqqs 7256  df-enq0 7327  df-nq0 7328  df-0nq0 7329  df-plq0 7330  df-mq0 7331  df-inp 7369  df-i1p 7370  df-iplp 7371  df-enr 7629  df-nr 7630  df-plr 7631  df-0r 7634  df-1r 7635  df-c 7721  df-1 7723  df-r 7725  df-add 7726
This theorem is referenced by:  axcaucvglemres  7802
  Copyright terms: Public domain W3C validator