![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nonsq | GIF version |
Description: Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
nonsq | ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9262 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
2 | 1 | ad2antlr 489 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℤ) |
3 | simprl 529 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < 𝐴) | |
4 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℕ0) | |
5 | 4 | nn0red 9219 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ) |
6 | 4 | nn0ge0d 9221 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐴) |
7 | resqrtth 11024 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
8 | 5, 6, 7 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) = 𝐴) |
9 | 3, 8 | breqtrrd 4028 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < ((√‘𝐴)↑2)) |
10 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℕ0) | |
11 | 10 | nn0red 9219 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℝ) |
12 | nn0re 9174 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
13 | 12 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ) |
14 | 13, 6 | resqrtcld 11156 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) ∈ ℝ) |
15 | 10 | nn0ge0d 9221 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐵) |
16 | 13, 6 | sqrtge0d 11159 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (√‘𝐴)) |
17 | 11, 14, 15, 16 | lt2sqd 10670 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 < (√‘𝐴) ↔ (𝐵↑2) < ((√‘𝐴)↑2))) |
18 | 9, 17 | mpbird 167 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 < (√‘𝐴)) |
19 | simprr 531 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 < ((𝐵 + 1)↑2)) | |
20 | 8, 19 | eqbrtrd 4022 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) < ((𝐵 + 1)↑2)) |
21 | peano2re 8083 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
22 | 11, 21 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℝ) |
23 | peano2nn0 9205 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0) | |
24 | 23 | ad2antlr 489 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℕ0) |
25 | 24 | nn0ge0d 9221 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (𝐵 + 1)) |
26 | 14, 22, 16, 25 | lt2sqd 10670 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) < (𝐵 + 1) ↔ ((√‘𝐴)↑2) < ((𝐵 + 1)↑2))) |
27 | 20, 26 | mpbird 167 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) < (𝐵 + 1)) |
28 | btwnnz 9336 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 < (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) → ¬ (√‘𝐴) ∈ ℤ) | |
29 | 2, 18, 27, 28 | syl3anc 1238 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℤ) |
30 | nn0sqrtelqelz 12189 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) | |
31 | 30 | ex 115 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ)) |
32 | 31 | ad2antrr 488 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ)) |
33 | 29, 32 | mtod 663 | 1 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4000 ‘cfv 5212 (class class class)co 5869 ℝcr 7801 0cc0 7802 1c1 7803 + caddc 7805 < clt 7982 ≤ cle 7983 2c2 8959 ℕ0cn0 9165 ℤcz 9242 ℚcq 9608 ↑cexp 10505 √csqrt 10989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 ax-arch 7921 ax-caucvg 7922 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-ilim 4366 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-frec 6386 df-sup 6977 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-3 8968 df-4 8969 df-n0 9166 df-z 9243 df-uz 9518 df-q 9609 df-rp 9641 df-fz 9996 df-fzo 10129 df-fl 10256 df-mod 10309 df-seqfrec 10432 df-exp 10506 df-cj 10835 df-re 10836 df-im 10837 df-rsqrt 10991 df-abs 10992 df-dvds 11779 df-gcd 11927 df-numer 12166 df-denom 12167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |