ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nonsq GIF version

Theorem nonsq 12190
Description: Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
nonsq (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)

Proof of Theorem nonsq
StepHypRef Expression
1 nn0z 9262 . . . 4 (𝐵 ∈ ℕ0𝐵 ∈ ℤ)
21ad2antlr 489 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℤ)
3 simprl 529 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < 𝐴)
4 simpll 527 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℕ0)
54nn0red 9219 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ)
64nn0ge0d 9221 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐴)
7 resqrtth 11024 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
85, 6, 7syl2anc 411 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) = 𝐴)
93, 8breqtrrd 4028 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < ((√‘𝐴)↑2))
10 simplr 528 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℕ0)
1110nn0red 9219 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℝ)
12 nn0re 9174 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1312ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ)
1413, 6resqrtcld 11156 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) ∈ ℝ)
1510nn0ge0d 9221 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐵)
1613, 6sqrtge0d 11159 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (√‘𝐴))
1711, 14, 15, 16lt2sqd 10670 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 < (√‘𝐴) ↔ (𝐵↑2) < ((√‘𝐴)↑2)))
189, 17mpbird 167 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐵 < (√‘𝐴))
19 simprr 531 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 𝐴 < ((𝐵 + 1)↑2))
208, 19eqbrtrd 4022 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) < ((𝐵 + 1)↑2))
21 peano2re 8083 . . . . . 6 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
2211, 21syl 14 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℝ)
23 peano2nn0 9205 . . . . . . 7 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2423ad2antlr 489 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℕ0)
2524nn0ge0d 9221 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (𝐵 + 1))
2614, 22, 16, 25lt2sqd 10670 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) < (𝐵 + 1) ↔ ((√‘𝐴)↑2) < ((𝐵 + 1)↑2)))
2720, 26mpbird 167 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) < (𝐵 + 1))
28 btwnnz 9336 . . 3 ((𝐵 ∈ ℤ ∧ 𝐵 < (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) → ¬ (√‘𝐴) ∈ ℤ)
292, 18, 27, 28syl3anc 1238 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℤ)
30 nn0sqrtelqelz 12189 . . . 4 ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ)
3130ex 115 . . 3 (𝐴 ∈ ℕ0 → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3231ad2antrr 488 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ))
3329, 32mtod 663 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cle 7983  2c2 8959  0cn0 9165  cz 9242  cq 9608  cexp 10505  csqrt 10989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-numer 12166  df-denom 12167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator