Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nonsq | GIF version |
Description: Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
nonsq | ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9207 | . . . 4 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
2 | 1 | ad2antlr 481 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℤ) |
3 | simprl 521 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < 𝐴) | |
4 | simpll 519 | . . . . . . 7 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℕ0) | |
5 | 4 | nn0red 9164 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ) |
6 | 4 | nn0ge0d 9166 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐴) |
7 | resqrtth 10969 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
8 | 5, 6, 7 | syl2anc 409 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) = 𝐴) |
9 | 3, 8 | breqtrrd 4009 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵↑2) < ((√‘𝐴)↑2)) |
10 | simplr 520 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℕ0) | |
11 | 10 | nn0red 9164 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 ∈ ℝ) |
12 | nn0re 9119 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
13 | 12 | ad2antrr 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 ∈ ℝ) |
14 | 13, 6 | resqrtcld 11101 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) ∈ ℝ) |
15 | 10 | nn0ge0d 9166 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ 𝐵) |
16 | 13, 6 | sqrtge0d 11104 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (√‘𝐴)) |
17 | 11, 14, 15, 16 | lt2sqd 10615 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 < (√‘𝐴) ↔ (𝐵↑2) < ((√‘𝐴)↑2))) |
18 | 9, 17 | mpbird 166 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐵 < (√‘𝐴)) |
19 | simprr 522 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 𝐴 < ((𝐵 + 1)↑2)) | |
20 | 8, 19 | eqbrtrd 4003 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴)↑2) < ((𝐵 + 1)↑2)) |
21 | peano2re 8030 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ) | |
22 | 11, 21 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℝ) |
23 | peano2nn0 9150 | . . . . . . 7 ⊢ (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0) | |
24 | 23 | ad2antlr 481 | . . . . . 6 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (𝐵 + 1) ∈ ℕ0) |
25 | 24 | nn0ge0d 9166 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → 0 ≤ (𝐵 + 1)) |
26 | 14, 22, 16, 25 | lt2sqd 10615 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) < (𝐵 + 1) ↔ ((√‘𝐴)↑2) < ((𝐵 + 1)↑2))) |
27 | 20, 26 | mpbird 166 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → (√‘𝐴) < (𝐵 + 1)) |
28 | btwnnz 9281 | . . 3 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 < (√‘𝐴) ∧ (√‘𝐴) < (𝐵 + 1)) → ¬ (√‘𝐴) ∈ ℤ) | |
29 | 2, 18, 27, 28 | syl3anc 1228 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℤ) |
30 | nn0sqrtelqelz 12134 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) | |
31 | 30 | ex 114 | . . 3 ⊢ (𝐴 ∈ ℕ0 → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ)) |
32 | 31 | ad2antrr 480 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ((√‘𝐴) ∈ ℚ → (√‘𝐴) ∈ ℤ)) |
33 | 29, 32 | mtod 653 | 1 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 ‘cfv 5187 (class class class)co 5841 ℝcr 7748 0cc0 7749 1c1 7750 + caddc 7752 < clt 7929 ≤ cle 7930 2c2 8904 ℕ0cn0 9110 ℤcz 9187 ℚcq 9553 ↑cexp 10450 √csqrt 10934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-sup 6945 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fz 9941 df-fzo 10074 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 df-dvds 11724 df-gcd 11872 df-numer 12111 df-denom 12112 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |