ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm GIF version

Theorem cvgratnnlemfm 11873
Description: Lemma for cvgratnn 11875. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemfm.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemfm (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5578 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
21eleq1d 2274 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3 cvgratnn.6 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
43ralrimiva 2579 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5 cvgratnnlemfm.m . . . 4 (𝜑𝑀 ∈ ℕ)
62, 4, 5rspcdva 2882 . . 3 (𝜑 → (𝐹𝑀) ∈ ℂ)
76abscld 11525 . 2 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
8 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
9 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
108, 9gt0ap0d 8704 . . . . . . . . . 10 (𝜑𝐴 # 0)
118, 10rerecclapd 8909 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
12 1red 8089 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
1311, 12resubcld 8455 . . . . . . . 8 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
14 cvgratnn.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
158, 9elrpd 9817 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1615reclt1d 9834 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1714, 16mpbid 147 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
1812, 11posdifd 8607 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1917, 18mpbid 147 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
2013, 19elrpd 9817 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
2120rpreccld 9831 . . . . . 6 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
2221, 15rpdivcld 9838 . . . . 5 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
2322rpred 9820 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ)
24 fveq2 5578 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2524eleq1d 2274 . . . . . 6 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
26 1nn 9049 . . . . . . 7 1 ∈ ℕ
2726a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
2825, 4, 27rspcdva 2882 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℂ)
2928abscld 11525 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3023, 29remulcld 8105 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) ∈ ℝ)
3130, 5nndivred 9088 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) ∈ ℝ)
32 peano2re 8210 . . . . 5 ((abs‘(𝐹‘1)) ∈ ℝ → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3329, 32syl 14 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3423, 33remulcld 8105 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
3534, 5nndivred 9088 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
36 nnm1nn0 9338 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
375, 36syl 14 . . . . 5 (𝜑 → (𝑀 − 1) ∈ ℕ0)
388, 37reexpcld 10837 . . . 4 (𝜑 → (𝐴↑(𝑀 − 1)) ∈ ℝ)
3929, 38remulcld 8105 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ∈ ℝ)
40 cvgratnn.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11868 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))))
4223, 5nndivred 9088 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀) ∈ ℝ)
4328absge0d 11528 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
448recnd 8103 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
455nnzd 9496 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
4644, 10, 45expm1apd 10830 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
475nnnn0d 9350 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
488, 47reexpcld 10837 . . . . . . . . 9 (𝜑 → (𝐴𝑀) ∈ ℝ)
4921rpred 9820 . . . . . . . . . 10 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ)
5049, 5nndivred 9088 . . . . . . . . 9 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) ∈ ℝ)
518, 14, 9, 5cvgratnnlembern 11867 . . . . . . . . 9 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
5248, 50, 15, 51ltdiv1dd 9878 . . . . . . . 8 (𝜑 → ((𝐴𝑀) / 𝐴) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5346, 52eqbrtrd 4067 . . . . . . 7 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5449recnd 8103 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℂ)
555nncnd 9052 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
565nnap0d 9084 . . . . . . . 8 (𝜑𝑀 # 0)
5754, 55, 44, 56, 10divdiv32apd 8891 . . . . . . 7 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5853, 57breqtrd 4071 . . . . . 6 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5938, 42, 58ltled 8193 . . . . 5 (𝜑 → (𝐴↑(𝑀 − 1)) ≤ (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
6038, 42, 29, 43, 59lemul2ad 9015 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6129recnd 8103 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
6223recnd 8103 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℂ)
6361, 62mulcomd 8096 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))))
6463oveq1d 5961 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
6561, 62, 55, 56divassapd 8901 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6664, 65eqtr3d 2240 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6760, 66breqtrrd 4073 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
687, 39, 31, 41, 67letrd 8198 . 2 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
695nnrpd 9818 . . 3 (𝜑𝑀 ∈ ℝ+)
7029ltp1d 9005 . . . 4 (𝜑 → (abs‘(𝐹‘1)) < ((abs‘(𝐹‘1)) + 1))
7129, 33, 22, 70ltmul2dd 9877 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)))
7230, 34, 69, 71ltdiv1dd 9878 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
737, 31, 35, 68, 72lelttrd 8199 1 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176   class class class wbr 4045  cfv 5272  (class class class)co 5946  cc 7925  cr 7926  0cc0 7927  1c1 7928   + caddc 7930   · cmul 7932   < clt 8109  cle 8110  cmin 8245   / cdiv 8747  cn 9038  0cn0 9297  cexp 10685  abscabs 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343
This theorem is referenced by:  cvgratnnlemrate  11874
  Copyright terms: Public domain W3C validator