ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm GIF version

Theorem cvgratnnlemfm 11711
Description: Lemma for cvgratnn 11713. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemfm.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemfm (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5561 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
21eleq1d 2265 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3 cvgratnn.6 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
43ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5 cvgratnnlemfm.m . . . 4 (𝜑𝑀 ∈ ℕ)
62, 4, 5rspcdva 2873 . . 3 (𝜑 → (𝐹𝑀) ∈ ℂ)
76abscld 11363 . 2 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
8 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
9 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
108, 9gt0ap0d 8673 . . . . . . . . . 10 (𝜑𝐴 # 0)
118, 10rerecclapd 8878 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
12 1red 8058 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
1311, 12resubcld 8424 . . . . . . . 8 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
14 cvgratnn.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
158, 9elrpd 9785 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1615reclt1d 9802 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1714, 16mpbid 147 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
1812, 11posdifd 8576 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1917, 18mpbid 147 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
2013, 19elrpd 9785 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
2120rpreccld 9799 . . . . . 6 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
2221, 15rpdivcld 9806 . . . . 5 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
2322rpred 9788 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ)
24 fveq2 5561 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2524eleq1d 2265 . . . . . 6 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
26 1nn 9018 . . . . . . 7 1 ∈ ℕ
2726a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
2825, 4, 27rspcdva 2873 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℂ)
2928abscld 11363 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3023, 29remulcld 8074 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) ∈ ℝ)
3130, 5nndivred 9057 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) ∈ ℝ)
32 peano2re 8179 . . . . 5 ((abs‘(𝐹‘1)) ∈ ℝ → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3329, 32syl 14 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3423, 33remulcld 8074 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
3534, 5nndivred 9057 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
36 nnm1nn0 9307 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
375, 36syl 14 . . . . 5 (𝜑 → (𝑀 − 1) ∈ ℕ0)
388, 37reexpcld 10799 . . . 4 (𝜑 → (𝐴↑(𝑀 − 1)) ∈ ℝ)
3929, 38remulcld 8074 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ∈ ℝ)
40 cvgratnn.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11706 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))))
4223, 5nndivred 9057 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀) ∈ ℝ)
4328absge0d 11366 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
448recnd 8072 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
455nnzd 9464 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
4644, 10, 45expm1apd 10792 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
475nnnn0d 9319 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
488, 47reexpcld 10799 . . . . . . . . 9 (𝜑 → (𝐴𝑀) ∈ ℝ)
4921rpred 9788 . . . . . . . . . 10 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ)
5049, 5nndivred 9057 . . . . . . . . 9 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) ∈ ℝ)
518, 14, 9, 5cvgratnnlembern 11705 . . . . . . . . 9 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
5248, 50, 15, 51ltdiv1dd 9846 . . . . . . . 8 (𝜑 → ((𝐴𝑀) / 𝐴) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5346, 52eqbrtrd 4056 . . . . . . 7 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5449recnd 8072 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℂ)
555nncnd 9021 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
565nnap0d 9053 . . . . . . . 8 (𝜑𝑀 # 0)
5754, 55, 44, 56, 10divdiv32apd 8860 . . . . . . 7 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5853, 57breqtrd 4060 . . . . . 6 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5938, 42, 58ltled 8162 . . . . 5 (𝜑 → (𝐴↑(𝑀 − 1)) ≤ (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
6038, 42, 29, 43, 59lemul2ad 8984 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6129recnd 8072 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
6223recnd 8072 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℂ)
6361, 62mulcomd 8065 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))))
6463oveq1d 5940 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
6561, 62, 55, 56divassapd 8870 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6664, 65eqtr3d 2231 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6760, 66breqtrrd 4062 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
687, 39, 31, 41, 67letrd 8167 . 2 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
695nnrpd 9786 . . 3 (𝜑𝑀 ∈ ℝ+)
7029ltp1d 8974 . . . 4 (𝜑 → (abs‘(𝐹‘1)) < ((abs‘(𝐹‘1)) + 1))
7129, 33, 22, 70ltmul2dd 9845 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)))
7230, 34, 69, 71ltdiv1dd 9846 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
737, 31, 35, 68, 72lelttrd 8168 1 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  0cn0 9266  cexp 10647  abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  cvgratnnlemrate  11712
  Copyright terms: Public domain W3C validator