ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemfm GIF version

Theorem cvgratnnlemfm 11955
Description: Lemma for cvgratnn 11957. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemfm.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
cvgratnnlemfm (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemfm
StepHypRef Expression
1 fveq2 5599 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
21eleq1d 2276 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3 cvgratnn.6 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
43ralrimiva 2581 . . . 4 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5 cvgratnnlemfm.m . . . 4 (𝜑𝑀 ∈ ℕ)
62, 4, 5rspcdva 2889 . . 3 (𝜑 → (𝐹𝑀) ∈ ℂ)
76abscld 11607 . 2 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
8 cvgratnn.3 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
9 cvgratnn.gt0 . . . . . . . . . . 11 (𝜑 → 0 < 𝐴)
108, 9gt0ap0d 8737 . . . . . . . . . 10 (𝜑𝐴 # 0)
118, 10rerecclapd 8942 . . . . . . . . 9 (𝜑 → (1 / 𝐴) ∈ ℝ)
12 1red 8122 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
1311, 12resubcld 8488 . . . . . . . 8 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ)
14 cvgratnn.4 . . . . . . . . . 10 (𝜑𝐴 < 1)
158, 9elrpd 9850 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
1615reclt1d 9867 . . . . . . . . . 10 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1714, 16mpbid 147 . . . . . . . . 9 (𝜑 → 1 < (1 / 𝐴))
1812, 11posdifd 8640 . . . . . . . . 9 (𝜑 → (1 < (1 / 𝐴) ↔ 0 < ((1 / 𝐴) − 1)))
1917, 18mpbid 147 . . . . . . . 8 (𝜑 → 0 < ((1 / 𝐴) − 1))
2013, 19elrpd 9850 . . . . . . 7 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
2120rpreccld 9864 . . . . . 6 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
2221, 15rpdivcld 9871 . . . . 5 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
2322rpred 9853 . . . 4 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ)
24 fveq2 5599 . . . . . . 7 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
2524eleq1d 2276 . . . . . 6 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
26 1nn 9082 . . . . . . 7 1 ∈ ℕ
2726a1i 9 . . . . . 6 (𝜑 → 1 ∈ ℕ)
2825, 4, 27rspcdva 2889 . . . . 5 (𝜑 → (𝐹‘1) ∈ ℂ)
2928abscld 11607 . . . 4 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
3023, 29remulcld 8138 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) ∈ ℝ)
3130, 5nndivred 9121 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) ∈ ℝ)
32 peano2re 8243 . . . . 5 ((abs‘(𝐹‘1)) ∈ ℝ → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3329, 32syl 14 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ)
3423, 33remulcld 8138 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
3534, 5nndivred 9121 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
36 nnm1nn0 9371 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
375, 36syl 14 . . . . 5 (𝜑 → (𝑀 − 1) ∈ ℕ0)
388, 37reexpcld 10872 . . . 4 (𝜑 → (𝐴↑(𝑀 − 1)) ∈ ℝ)
3929, 38remulcld 8138 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ∈ ℝ)
40 cvgratnn.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
418, 14, 9, 3, 40, 5cvgratnnlemnexp 11950 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))))
4223, 5nndivred 9121 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀) ∈ ℝ)
4328absge0d 11610 . . . . 5 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
448recnd 8136 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
455nnzd 9529 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
4644, 10, 45expm1apd 10865 . . . . . . . 8 (𝜑 → (𝐴↑(𝑀 − 1)) = ((𝐴𝑀) / 𝐴))
475nnnn0d 9383 . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ0)
488, 47reexpcld 10872 . . . . . . . . 9 (𝜑 → (𝐴𝑀) ∈ ℝ)
4921rpred 9853 . . . . . . . . . 10 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ)
5049, 5nndivred 9121 . . . . . . . . 9 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝑀) ∈ ℝ)
518, 14, 9, 5cvgratnnlembern 11949 . . . . . . . . 9 (𝜑 → (𝐴𝑀) < ((1 / ((1 / 𝐴) − 1)) / 𝑀))
5248, 50, 15, 51ltdiv1dd 9911 . . . . . . . 8 (𝜑 → ((𝐴𝑀) / 𝐴) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5346, 52eqbrtrd 4081 . . . . . . 7 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴))
5449recnd 8136 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℂ)
555nncnd 9085 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
565nnap0d 9117 . . . . . . . 8 (𝜑𝑀 # 0)
5754, 55, 44, 56, 10divdiv32apd 8924 . . . . . . 7 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝑀) / 𝐴) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5853, 57breqtrd 4085 . . . . . 6 (𝜑 → (𝐴↑(𝑀 − 1)) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
5938, 42, 58ltled 8226 . . . . 5 (𝜑 → (𝐴↑(𝑀 − 1)) ≤ (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀))
6038, 42, 29, 43, 59lemul2ad 9048 . . . 4 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6129recnd 8136 . . . . . . 7 (𝜑 → (abs‘(𝐹‘1)) ∈ ℂ)
6223recnd 8136 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℂ)
6361, 62mulcomd 8129 . . . . . 6 (𝜑 → ((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) = (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))))
6463oveq1d 5982 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
6561, 62, 55, 56divassapd 8934 . . . . 5 (𝜑 → (((abs‘(𝐹‘1)) · ((1 / ((1 / 𝐴) − 1)) / 𝐴)) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6664, 65eqtr3d 2242 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) = ((abs‘(𝐹‘1)) · (((1 / ((1 / 𝐴) − 1)) / 𝐴) / 𝑀)))
6760, 66breqtrrd 4087 . . 3 (𝜑 → ((abs‘(𝐹‘1)) · (𝐴↑(𝑀 − 1))) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
687, 39, 31, 41, 67letrd 8231 . 2 (𝜑 → (abs‘(𝐹𝑀)) ≤ ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀))
695nnrpd 9851 . . 3 (𝜑𝑀 ∈ ℝ+)
7029ltp1d 9038 . . . 4 (𝜑 → (abs‘(𝐹‘1)) < ((abs‘(𝐹‘1)) + 1))
7129, 33, 22, 70ltmul2dd 9910 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) < (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)))
7230, 34, 69, 71ltdiv1dd 9911 . 2 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · (abs‘(𝐹‘1))) / 𝑀) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
737, 31, 35, 68, 72lelttrd 8232 1 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  cr 7959  0cc0 7960  1c1 7961   + caddc 7963   · cmul 7965   < clt 8142  cle 8143  cmin 8278   / cdiv 8780  cn 9071  0cn0 9330  cexp 10720  abscabs 11423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425
This theorem is referenced by:  cvgratnnlemrate  11956
  Copyright terms: Public domain W3C validator