| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bernneq3 | GIF version | ||
| Description: A corollary of bernneq 10769. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| Ref | Expression |
|---|---|
| bernneq3 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9275 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 3 | peano2re 8179 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ) |
| 5 | eluzelre 9628 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℝ) | |
| 6 | reexpcl 10665 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) | |
| 7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) |
| 8 | 2 | ltp1d 8974 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1)) |
| 9 | uz2m1nn 9696 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) | |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ) |
| 11 | 10 | nnred 9020 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ) |
| 12 | 11, 2 | remulcld 8074 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ) |
| 13 | peano2re 8179 | . . . 4 ⊢ (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) |
| 15 | 1red 8058 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ) | |
| 16 | nn0ge0 9291 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 17 | 16 | adantl 277 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
| 18 | 10 | nnge1d 9050 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1)) |
| 19 | 2, 11, 17, 18 | lemulge12d 8982 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁)) |
| 20 | 2, 12, 15, 19 | leadd1dd 8603 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1)) |
| 21 | 5 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ) |
| 22 | simpr 110 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 23 | eluzge2nn0 9660 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ0) | |
| 24 | nn0ge0 9291 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → 0 ≤ 𝑃) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 0 ≤ 𝑃) |
| 26 | 25 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃) |
| 27 | bernneq2 10770 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) | |
| 28 | 21, 22, 26, 27 | syl3anc 1249 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) |
| 29 | 4, 14, 7, 20, 28 | letrd 8167 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃↑𝑁)) |
| 30 | 2, 4, 7, 8, 29 | ltletrd 8467 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℝcr 7895 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 < clt 8078 ≤ cle 8079 − cmin 8214 ℕcn 9007 2c2 9058 ℕ0cn0 9266 ℤ≥cuz 9618 ↑cexp 10647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-exp 10648 |
| This theorem is referenced by: resqrexlemcvg 11201 resqrexlemga 11205 bitsfzo 12137 bitsinv1 12144 pw2dvds 12359 pcfaclem 12543 pcfac 12544 cvgcmp2nlemabs 15763 trilpolemlt1 15772 |
| Copyright terms: Public domain | W3C validator |