| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bernneq3 | GIF version | ||
| Description: A corollary of bernneq 10827. (Contributed by Mario Carneiro, 11-Mar-2014.) |
| Ref | Expression |
|---|---|
| bernneq3 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9324 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 1 | adantl 277 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
| 3 | peano2re 8228 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ) |
| 5 | eluzelre 9678 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℝ) | |
| 6 | reexpcl 10723 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) | |
| 7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) |
| 8 | 2 | ltp1d 9023 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1)) |
| 9 | uz2m1nn 9746 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) | |
| 10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ) |
| 11 | 10 | nnred 9069 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ) |
| 12 | 11, 2 | remulcld 8123 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ) |
| 13 | peano2re 8228 | . . . 4 ⊢ (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) | |
| 14 | 12, 13 | syl 14 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) |
| 15 | 1red 8107 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ) | |
| 16 | nn0ge0 9340 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 17 | 16 | adantl 277 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
| 18 | 10 | nnge1d 9099 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1)) |
| 19 | 2, 11, 17, 18 | lemulge12d 9031 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁)) |
| 20 | 2, 12, 15, 19 | leadd1dd 8652 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1)) |
| 21 | 5 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ) |
| 22 | simpr 110 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 23 | eluzge2nn0 9710 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ0) | |
| 24 | nn0ge0 9340 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → 0 ≤ 𝑃) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 0 ≤ 𝑃) |
| 26 | 25 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃) |
| 27 | bernneq2 10828 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) | |
| 28 | 21, 22, 26, 27 | syl3anc 1250 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) |
| 29 | 4, 14, 7, 20, 28 | letrd 8216 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃↑𝑁)) |
| 30 | 2, 4, 7, 8, 29 | ltletrd 8516 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4051 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 0cc0 7945 1c1 7946 + caddc 7948 · cmul 7950 < clt 8127 ≤ cle 8128 − cmin 8263 ℕcn 9056 2c2 9107 ℕ0cn0 9315 ℤ≥cuz 9668 ↑cexp 10705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-exp 10706 |
| This theorem is referenced by: resqrexlemcvg 11405 resqrexlemga 11409 bitsfzo 12341 bitsinv1 12348 pw2dvds 12563 pcfaclem 12747 pcfac 12748 cvgcmp2nlemabs 16112 trilpolemlt1 16121 |
| Copyright terms: Public domain | W3C validator |