ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq3 GIF version

Theorem bernneq3 10444
Description: A corollary of bernneq 10442. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 9009 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantl 275 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 peano2re 7921 . . 3 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
42, 3syl 14 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
5 eluzelre 9359 . . 3 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 reexpcl 10340 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
75, 6sylan 281 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
82ltp1d 8711 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1))
9 uz2m1nn 9425 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
109adantr 274 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ)
1110nnred 8756 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ)
1211, 2remulcld 7819 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ)
13 peano2re 7921 . . . 4 (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
1412, 13syl 14 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
15 1red 7804 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ)
16 nn0ge0 9025 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1716adantl 275 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
1810nnge1d 8786 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1))
192, 11, 17, 18lemulge12d 8719 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁))
202, 12, 15, 19leadd1dd 8344 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1))
215adantr 274 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
22 simpr 109 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 9390 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ0)
24 nn0ge0 9025 . . . . . 6 (𝑃 ∈ ℕ0 → 0 ≤ 𝑃)
2523, 24syl 14 . . . . 5 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2625adantr 274 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃)
27 bernneq2 10443 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
2821, 22, 26, 27syl3anc 1217 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
294, 14, 7, 20, 28letrd 7909 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃𝑁))
302, 4, 7, 8, 29ltletrd 8208 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481   class class class wbr 3936  cfv 5130  (class class class)co 5781  cr 7642  0cc0 7643  1c1 7644   + caddc 7646   · cmul 7648   < clt 7823  cle 7824  cmin 7956  cn 8743  2c2 8794  0cn0 9000  cuz 9349  cexp 10322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-n0 9001  df-z 9078  df-uz 9350  df-seqfrec 10249  df-exp 10323
This theorem is referenced by:  resqrexlemcvg  10822  resqrexlemga  10826  pw2dvds  11878  cvgcmp2nlemabs  13400  trilpolemlt1  13407
  Copyright terms: Public domain W3C validator