Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bernneq3 | GIF version |
Description: A corollary of bernneq 10583. (Contributed by Mario Carneiro, 11-Mar-2014.) |
Ref | Expression |
---|---|
bernneq3 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9131 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | adantl 275 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
3 | peano2re 8042 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ) |
5 | eluzelre 9484 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℝ) | |
6 | reexpcl 10480 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) | |
7 | 5, 6 | sylan 281 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) |
8 | 2 | ltp1d 8833 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1)) |
9 | uz2m1nn 9551 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) | |
10 | 9 | adantr 274 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ) |
11 | 10 | nnred 8878 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ) |
12 | 11, 2 | remulcld 7937 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ) |
13 | peano2re 8042 | . . . 4 ⊢ (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) |
15 | 1red 7922 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ) | |
16 | nn0ge0 9147 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
17 | 16 | adantl 275 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
18 | 10 | nnge1d 8908 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1)) |
19 | 2, 11, 17, 18 | lemulge12d 8841 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁)) |
20 | 2, 12, 15, 19 | leadd1dd 8465 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1)) |
21 | 5 | adantr 274 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ) |
22 | simpr 109 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
23 | eluzge2nn0 9515 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ0) | |
24 | nn0ge0 9147 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → 0 ≤ 𝑃) | |
25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 0 ≤ 𝑃) |
26 | 25 | adantr 274 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃) |
27 | bernneq2 10584 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) | |
28 | 21, 22, 26, 27 | syl3anc 1233 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) |
29 | 4, 14, 7, 20, 28 | letrd 8030 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃↑𝑁)) |
30 | 2, 4, 7, 8, 29 | ltletrd 8329 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 ℝcr 7760 0cc0 7761 1c1 7762 + caddc 7764 · cmul 7766 < clt 7941 ≤ cle 7942 − cmin 8077 ℕcn 8865 2c2 8916 ℕ0cn0 9122 ℤ≥cuz 9474 ↑cexp 10462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-n0 9123 df-z 9200 df-uz 9475 df-seqfrec 10389 df-exp 10463 |
This theorem is referenced by: resqrexlemcvg 10970 resqrexlemga 10974 pw2dvds 12107 pcfaclem 12288 pcfac 12289 cvgcmp2nlemabs 13986 trilpolemlt1 13995 |
Copyright terms: Public domain | W3C validator |