![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bernneq3 | GIF version |
Description: A corollary of bernneq 10734. (Contributed by Mario Carneiro, 11-Mar-2014.) |
Ref | Expression |
---|---|
bernneq3 | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 9252 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 1 | adantl 277 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ) |
3 | peano2re 8157 | . . 3 ⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ) |
5 | eluzelre 9605 | . . 3 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℝ) | |
6 | reexpcl 10630 | . . 3 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) | |
7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℝ) |
8 | 2 | ltp1d 8951 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1)) |
9 | uz2m1nn 9673 | . . . . . . 7 ⊢ (𝑃 ∈ (ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) | |
10 | 9 | adantr 276 | . . . . . 6 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ) |
11 | 10 | nnred 8997 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ) |
12 | 11, 2 | remulcld 8052 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ) |
13 | peano2re 8157 | . . . 4 ⊢ (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) | |
14 | 12, 13 | syl 14 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ) |
15 | 1red 8036 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ) | |
16 | nn0ge0 9268 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
17 | 16 | adantl 277 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁) |
18 | 10 | nnge1d 9027 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1)) |
19 | 2, 11, 17, 18 | lemulge12d 8959 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁)) |
20 | 2, 12, 15, 19 | leadd1dd 8580 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1)) |
21 | 5 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ) |
22 | simpr 110 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
23 | eluzge2nn0 9637 | . . . . . 6 ⊢ (𝑃 ∈ (ℤ≥‘2) → 𝑃 ∈ ℕ0) | |
24 | nn0ge0 9268 | . . . . . 6 ⊢ (𝑃 ∈ ℕ0 → 0 ≤ 𝑃) | |
25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 0 ≤ 𝑃) |
26 | 25 | adantr 276 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃) |
27 | bernneq2 10735 | . . . 4 ⊢ ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) | |
28 | 21, 22, 26, 27 | syl3anc 1249 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃↑𝑁)) |
29 | 4, 14, 7, 20, 28 | letrd 8145 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃↑𝑁)) |
30 | 2, 4, 7, 8, 29 | ltletrd 8444 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃↑𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 < clt 8056 ≤ cle 8057 − cmin 8192 ℕcn 8984 2c2 9035 ℕ0cn0 9243 ℤ≥cuz 9595 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: resqrexlemcvg 11166 resqrexlemga 11170 pw2dvds 12307 pcfaclem 12490 pcfac 12491 cvgcmp2nlemabs 15592 trilpolemlt1 15601 |
Copyright terms: Public domain | W3C validator |