ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ubmelm1fzo GIF version

Theorem ubmelm1fzo 10244
Description: The result of subtracting 1 and an integer of a half-open range of nonnegative integers from the upper bound of this range is contained in this range. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 30-Oct-2018.)
Assertion
Ref Expression
ubmelm1fzo (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))

Proof of Theorem ubmelm1fzo
StepHypRef Expression
1 elfzo0 10200 . 2 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2 nnz 9290 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
32adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝑁 ∈ ℤ)
4 nn0z 9291 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
54adantl 277 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℤ)
63, 5zsubcld 9398 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ ℤ)
76ancoms 268 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
8 peano2zm 9309 . . . . . 6 ((𝑁𝐾) ∈ ℤ → ((𝑁𝐾) − 1) ∈ ℤ)
97, 8syl 14 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) ∈ ℤ)
1093adant3 1019 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℤ)
11 simp3 1001 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
124, 2anim12i 338 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
13123adant3 1019 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 znnsub 9322 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1513, 14syl 14 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝑁𝐾) ∈ ℕ))
1611, 15mpbid 147 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝑁𝐾) ∈ ℕ)
17 nnm1ge0 9357 . . . . 5 ((𝑁𝐾) ∈ ℕ → 0 ≤ ((𝑁𝐾) − 1))
1816, 17syl 14 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 0 ≤ ((𝑁𝐾) − 1))
19 elnn0z 9284 . . . 4 (((𝑁𝐾) − 1) ∈ ℕ0 ↔ (((𝑁𝐾) − 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝐾) − 1)))
2010, 18, 19sylanbrc 417 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ ℕ0)
21 simp2 1000 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 nncn 8945 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2322adantl 277 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
24 nn0cn 9204 . . . . . . 7 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
2524adantr 276 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℂ)
26 1cnd 7991 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℂ)
2723, 25, 26subsub4d 8317 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) = (𝑁 − (𝐾 + 1)))
28 nn0p1gt0 9223 . . . . . . 7 (𝐾 ∈ ℕ0 → 0 < (𝐾 + 1))
2928adantr 276 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 0 < (𝐾 + 1))
30 nn0re 9203 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
31 peano2re 8111 . . . . . . . 8 (𝐾 ∈ ℝ → (𝐾 + 1) ∈ ℝ)
3230, 31syl 14 . . . . . . 7 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℝ)
33 nnre 8944 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
34 ltsubpos 8429 . . . . . . 7 (((𝐾 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3532, 33, 34syl2an 289 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (0 < (𝐾 + 1) ↔ (𝑁 − (𝐾 + 1)) < 𝑁))
3629, 35mpbid 147 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 − (𝐾 + 1)) < 𝑁)
3727, 36eqbrtrd 4040 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → ((𝑁𝐾) − 1) < 𝑁)
38373adant3 1019 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) < 𝑁)
39 elfzo0 10200 . . 3 (((𝑁𝐾) − 1) ∈ (0..^𝑁) ↔ (((𝑁𝐾) − 1) ∈ ℕ0𝑁 ∈ ℕ ∧ ((𝑁𝐾) − 1) < 𝑁))
4020, 21, 38, 39syl3anbrc 1183 . 2 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
411, 40sylbi 121 1 (𝐾 ∈ (0..^𝑁) → ((𝑁𝐾) − 1) ∈ (0..^𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2160   class class class wbr 4018  (class class class)co 5891  cc 7827  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   < clt 8010  cle 8011  cmin 8146  cn 8937  0cn0 9194  cz 9271  ..^cfzo 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-uz 9547  df-fz 10027  df-fzo 10161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator