ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnapz GIF version

Theorem btwnapz 9321
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
Hypotheses
Ref Expression
btwnapz.a (𝜑𝐴 ∈ ℤ)
btwnapz.b (𝜑𝐵 ∈ ℝ)
btwnapz.c (𝜑𝐶 ∈ ℤ)
btwnapz.ab (𝜑𝐴 < 𝐵)
btwnapz.ba (𝜑𝐵 < (𝐴 + 1))
Assertion
Ref Expression
btwnapz (𝜑𝐵 # 𝐶)

Proof of Theorem btwnapz
StepHypRef Expression
1 btwnapz.c . . . . 5 (𝜑𝐶 ∈ ℤ)
21zred 9313 . . . 4 (𝜑𝐶 ∈ ℝ)
32adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐶 ∈ ℝ)
4 btwnapz.b . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐵 ∈ ℝ)
6 btwnapz.a . . . . . 6 (𝜑𝐴 ∈ ℤ)
76zred 9313 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 ∈ ℝ)
9 simpr 109 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
10 btwnapz.ab . . . . 5 (𝜑𝐴 < 𝐵)
1110adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 < 𝐵)
123, 8, 5, 9, 11lelttrd 8023 . . 3 ((𝜑𝐶𝐴) → 𝐶 < 𝐵)
133, 5, 12gtapd 8535 . 2 ((𝜑𝐶𝐴) → 𝐵 # 𝐶)
144adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 ∈ ℝ)
152adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐶 ∈ ℝ)
16 peano2re 8034 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
177, 16syl 14 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ)
19 btwnapz.ba . . . . 5 (𝜑𝐵 < (𝐴 + 1))
2019adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → 𝐵 < (𝐴 + 1))
21 zltp1le 9245 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
226, 1, 21syl2anc 409 . . . . 5 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2322biimpa 294 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶)
2414, 18, 15, 20, 23ltletrd 8321 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 < 𝐶)
2514, 15, 24ltapd 8536 . 2 ((𝜑𝐴 < 𝐶) → 𝐵 # 𝐶)
26 zlelttric 9236 . . 3 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴𝐴 < 𝐶))
271, 6, 26syl2anc 409 . 2 (𝜑 → (𝐶𝐴𝐴 < 𝐶))
2813, 25, 27mpjaodan 788 1 (𝜑𝐵 # 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  1c1 7754   + caddc 7756   < clt 7933  cle 7934   # cap 8479  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  eirraplem  11717
  Copyright terms: Public domain W3C validator