| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > btwnapz | GIF version | ||
| Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.) |
| Ref | Expression |
|---|---|
| btwnapz.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| btwnapz.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| btwnapz.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| btwnapz.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
| btwnapz.ba | ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) |
| Ref | Expression |
|---|---|
| btwnapz | ⊢ (𝜑 → 𝐵 # 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnapz.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | 1 | zred 9465 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ∈ ℝ) |
| 4 | btwnapz.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 6 | btwnapz.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | 6 | zred 9465 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ≤ 𝐴) | |
| 10 | btwnapz.ab | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 < 𝐵) |
| 12 | 3, 8, 5, 9, 11 | lelttrd 8168 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 < 𝐵) |
| 13 | 3, 5, 12 | gtapd 8681 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 # 𝐶) |
| 14 | 4 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 ∈ ℝ) |
| 15 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐶 ∈ ℝ) |
| 16 | peano2re 8179 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 17 | 7, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ) |
| 19 | btwnapz.ba | . . . . 5 ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) | |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < (𝐴 + 1)) |
| 21 | zltp1le 9397 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 22 | 6, 1, 21 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
| 23 | 22 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶) |
| 24 | 14, 18, 15, 20, 23 | ltletrd 8467 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < 𝐶) |
| 25 | 14, 15, 24 | ltapd 8682 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 # 𝐶) |
| 26 | zlelttric 9388 | . . 3 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) | |
| 27 | 1, 6, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) |
| 28 | 13, 25, 27 | mpjaodan 799 | 1 ⊢ (𝜑 → 𝐵 # 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 < clt 8078 ≤ cle 8079 # cap 8625 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: eirraplem 11959 |
| Copyright terms: Public domain | W3C validator |