![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > btwnapz | GIF version |
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.) |
Ref | Expression |
---|---|
btwnapz.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
btwnapz.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
btwnapz.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
btwnapz.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
btwnapz.ba | ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) |
Ref | Expression |
---|---|
btwnapz | ⊢ (𝜑 → 𝐵 # 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnapz.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
2 | 1 | zred 8967 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
3 | 2 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ∈ ℝ) |
4 | btwnapz.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | 4 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 ∈ ℝ) |
6 | btwnapz.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
7 | 6 | zred 8967 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | 7 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 ∈ ℝ) |
9 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ≤ 𝐴) | |
10 | btwnapz.ab | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
11 | 10 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 < 𝐵) |
12 | 3, 8, 5, 9, 11 | lelttrd 7705 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 < 𝐵) |
13 | 3, 5, 12 | gtapd 8209 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 # 𝐶) |
14 | 4 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 ∈ ℝ) |
15 | 2 | adantr 271 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐶 ∈ ℝ) |
16 | peano2re 7715 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
17 | 7, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
18 | 17 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ) |
19 | btwnapz.ba | . . . . 5 ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) | |
20 | 19 | adantr 271 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < (𝐴 + 1)) |
21 | zltp1le 8902 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
22 | 6, 1, 21 | syl2anc 404 | . . . . 5 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
23 | 22 | biimpa 291 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶) |
24 | 14, 18, 15, 20, 23 | ltletrd 7998 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < 𝐶) |
25 | 14, 15, 24 | ltapd 8210 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 # 𝐶) |
26 | zlelttric 8893 | . . 3 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) | |
27 | 1, 6, 26 | syl2anc 404 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) |
28 | 13, 25, 27 | mpjaodan 750 | 1 ⊢ (𝜑 → 𝐵 # 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 667 ∈ wcel 1445 class class class wbr 3867 (class class class)co 5690 ℝcr 7446 1c1 7448 + caddc 7450 < clt 7619 ≤ cle 7620 # cap 8155 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-apti 7557 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-reap 8149 df-ap 8156 df-inn 8521 df-n0 8772 df-z 8849 |
This theorem is referenced by: eirraplem 11229 |
Copyright terms: Public domain | W3C validator |