ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnapz GIF version

Theorem btwnapz 9386
Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
Hypotheses
Ref Expression
btwnapz.a (𝜑𝐴 ∈ ℤ)
btwnapz.b (𝜑𝐵 ∈ ℝ)
btwnapz.c (𝜑𝐶 ∈ ℤ)
btwnapz.ab (𝜑𝐴 < 𝐵)
btwnapz.ba (𝜑𝐵 < (𝐴 + 1))
Assertion
Ref Expression
btwnapz (𝜑𝐵 # 𝐶)

Proof of Theorem btwnapz
StepHypRef Expression
1 btwnapz.c . . . . 5 (𝜑𝐶 ∈ ℤ)
21zred 9378 . . . 4 (𝜑𝐶 ∈ ℝ)
32adantr 276 . . 3 ((𝜑𝐶𝐴) → 𝐶 ∈ ℝ)
4 btwnapz.b . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 276 . . 3 ((𝜑𝐶𝐴) → 𝐵 ∈ ℝ)
6 btwnapz.a . . . . . 6 (𝜑𝐴 ∈ ℤ)
76zred 9378 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 276 . . . 4 ((𝜑𝐶𝐴) → 𝐴 ∈ ℝ)
9 simpr 110 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
10 btwnapz.ab . . . . 5 (𝜑𝐴 < 𝐵)
1110adantr 276 . . . 4 ((𝜑𝐶𝐴) → 𝐴 < 𝐵)
123, 8, 5, 9, 11lelttrd 8085 . . 3 ((𝜑𝐶𝐴) → 𝐶 < 𝐵)
133, 5, 12gtapd 8597 . 2 ((𝜑𝐶𝐴) → 𝐵 # 𝐶)
144adantr 276 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 ∈ ℝ)
152adantr 276 . . 3 ((𝜑𝐴 < 𝐶) → 𝐶 ∈ ℝ)
16 peano2re 8096 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
177, 16syl 14 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817adantr 276 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ)
19 btwnapz.ba . . . . 5 (𝜑𝐵 < (𝐴 + 1))
2019adantr 276 . . . 4 ((𝜑𝐴 < 𝐶) → 𝐵 < (𝐴 + 1))
21 zltp1le 9310 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
226, 1, 21syl2anc 411 . . . . 5 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2322biimpa 296 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶)
2414, 18, 15, 20, 23ltletrd 8383 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 < 𝐶)
2514, 15, 24ltapd 8598 . 2 ((𝜑𝐴 < 𝐶) → 𝐵 # 𝐶)
26 zlelttric 9301 . . 3 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴𝐴 < 𝐶))
271, 6, 26syl2anc 411 . 2 (𝜑 → (𝐶𝐴𝐴 < 𝐶))
2813, 25, 27mpjaodan 798 1 (𝜑𝐵 # 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wcel 2148   class class class wbr 4005  (class class class)co 5878  cr 7813  1c1 7815   + caddc 7817   < clt 7995  cle 7996   # cap 8541  cz 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-inn 8923  df-n0 9180  df-z 9257
This theorem is referenced by:  eirraplem  11787
  Copyright terms: Public domain W3C validator