Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnapz GIF version

Theorem btwnapz 9234
 Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.)
Hypotheses
Ref Expression
btwnapz.a (𝜑𝐴 ∈ ℤ)
btwnapz.b (𝜑𝐵 ∈ ℝ)
btwnapz.c (𝜑𝐶 ∈ ℤ)
btwnapz.ab (𝜑𝐴 < 𝐵)
btwnapz.ba (𝜑𝐵 < (𝐴 + 1))
Assertion
Ref Expression
btwnapz (𝜑𝐵 # 𝐶)

Proof of Theorem btwnapz
StepHypRef Expression
1 btwnapz.c . . . . 5 (𝜑𝐶 ∈ ℤ)
21zred 9226 . . . 4 (𝜑𝐶 ∈ ℝ)
32adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐶 ∈ ℝ)
4 btwnapz.b . . . 4 (𝜑𝐵 ∈ ℝ)
54adantr 274 . . 3 ((𝜑𝐶𝐴) → 𝐵 ∈ ℝ)
6 btwnapz.a . . . . . 6 (𝜑𝐴 ∈ ℤ)
76zred 9226 . . . . 5 (𝜑𝐴 ∈ ℝ)
87adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 ∈ ℝ)
9 simpr 109 . . . 4 ((𝜑𝐶𝐴) → 𝐶𝐴)
10 btwnapz.ab . . . . 5 (𝜑𝐴 < 𝐵)
1110adantr 274 . . . 4 ((𝜑𝐶𝐴) → 𝐴 < 𝐵)
123, 8, 5, 9, 11lelttrd 7940 . . 3 ((𝜑𝐶𝐴) → 𝐶 < 𝐵)
133, 5, 12gtapd 8452 . 2 ((𝜑𝐶𝐴) → 𝐵 # 𝐶)
144adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 ∈ ℝ)
152adantr 274 . . 3 ((𝜑𝐴 < 𝐶) → 𝐶 ∈ ℝ)
16 peano2re 7951 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
177, 16syl 14 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ)
19 btwnapz.ba . . . . 5 (𝜑𝐵 < (𝐴 + 1))
2019adantr 274 . . . 4 ((𝜑𝐴 < 𝐶) → 𝐵 < (𝐴 + 1))
21 zltp1le 9161 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
226, 1, 21syl2anc 409 . . . . 5 (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
2322biimpa 294 . . . 4 ((𝜑𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶)
2414, 18, 15, 20, 23ltletrd 8238 . . 3 ((𝜑𝐴 < 𝐶) → 𝐵 < 𝐶)
2514, 15, 24ltapd 8453 . 2 ((𝜑𝐴 < 𝐶) → 𝐵 # 𝐶)
26 zlelttric 9152 . . 3 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴𝐴 < 𝐶))
271, 6, 26syl2anc 409 . 2 (𝜑 → (𝐶𝐴𝐴 < 𝐶))
2813, 25, 27mpjaodan 788 1 (𝜑𝐵 # 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698   ∈ wcel 2112   class class class wbr 3939  (class class class)co 5786  ℝcr 7672  1c1 7674   + caddc 7676   < clt 7853   ≤ cle 7854   # cap 8396  ℤcz 9107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rab 2427  df-v 2693  df-sbc 2916  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-br 3940  df-opab 4000  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-iota 5100  df-fun 5137  df-fv 5143  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-inn 8774  df-n0 9031  df-z 9108 This theorem is referenced by:  eirraplem  11555
 Copyright terms: Public domain W3C validator