| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > btwnapz | GIF version | ||
| Description: A number between an integer and its successor is apart from any integer. (Contributed by Jim Kingdon, 6-Jan-2023.) |
| Ref | Expression |
|---|---|
| btwnapz.a | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| btwnapz.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| btwnapz.c | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| btwnapz.ab | ⊢ (𝜑 → 𝐴 < 𝐵) |
| btwnapz.ba | ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) |
| Ref | Expression |
|---|---|
| btwnapz | ⊢ (𝜑 → 𝐵 # 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnapz.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 2 | 1 | zred 9557 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 3 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ∈ ℝ) |
| 4 | btwnapz.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | 4 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 ∈ ℝ) |
| 6 | btwnapz.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 7 | 6 | zred 9557 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 9 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 ≤ 𝐴) | |
| 10 | btwnapz.ab | . . . . 5 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 11 | 10 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐴 < 𝐵) |
| 12 | 3, 8, 5, 9, 11 | lelttrd 8259 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐶 < 𝐵) |
| 13 | 3, 5, 12 | gtapd 8772 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≤ 𝐴) → 𝐵 # 𝐶) |
| 14 | 4 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 ∈ ℝ) |
| 15 | 2 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐶 ∈ ℝ) |
| 16 | peano2re 8270 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | |
| 17 | 7, 16 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐴 + 1) ∈ ℝ) |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ∈ ℝ) |
| 19 | btwnapz.ba | . . . . 5 ⊢ (𝜑 → 𝐵 < (𝐴 + 1)) | |
| 20 | 19 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < (𝐴 + 1)) |
| 21 | zltp1le 9489 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 22 | 6, 1, 21 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) |
| 23 | 22 | biimpa 296 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → (𝐴 + 1) ≤ 𝐶) |
| 24 | 14, 18, 15, 20, 23 | ltletrd 8558 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 < 𝐶) |
| 25 | 14, 15, 24 | ltapd 8773 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐶) → 𝐵 # 𝐶) |
| 26 | zlelttric 9479 | . . 3 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) | |
| 27 | 1, 6, 26 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐶 ≤ 𝐴 ∨ 𝐴 < 𝐶)) |
| 28 | 13, 25, 27 | mpjaodan 803 | 1 ⊢ (𝜑 → 𝐵 # 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 1c1 7988 + caddc 7990 < clt 8169 ≤ cle 8170 # cap 8716 ℤcz 9434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-inn 9099 df-n0 9358 df-z 9435 |
| This theorem is referenced by: eirraplem 12274 |
| Copyright terms: Public domain | W3C validator |