ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate GIF version

Theorem cvgratnnlemrate 11552
Description: Lemma for cvgratnn 11553. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemrate.m (𝜑𝑀 ∈ ℕ)
cvgratnnlemrate.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemrate (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemrate
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9577 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9294 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10488 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnnlemrate.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6 cvgratnnlemrate.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluznn 9614 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
85, 6, 7syl2anc 411 . . . . . 6 (𝜑𝑁 ∈ ℕ)
94, 8ffvelcdmd 5665 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ)
104, 5ffvelcdmd 5665 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
119, 10subcld 8282 . . . 4 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ)
1211abscld 11204 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ)
13 fveq2 5527 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1413eleq1d 2256 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
153ralrimiva 2560 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1614, 15, 5rspcdva 2858 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
1716abscld 11204 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
185nnzd 9388 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918peano2zd 9392 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
20 eluzelz 9551 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
216, 20syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2219, 21fzfigd 10445 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
23 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2423adantr 276 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
255nnred 8946 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2625adantr 276 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
27 peano2re 8107 . . . . . . . . 9 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2826, 27syl 14 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
29 elfzelz 10039 . . . . . . . . . 10 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
3029adantl 277 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
3130zred 9389 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
3226lep1d 8902 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
33 elfzle1 10041 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
3433adantl 277 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
3526, 28, 31, 32, 34letrd 8095 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
36 znn0sub 9332 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3718, 29, 36syl2an 289 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3835, 37mpbid 147 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
3924, 38reexpcld 10685 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
4022, 39fsumrecl 11423 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) ∈ ℝ)
4117, 40remulcld 8002 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) ∈ ℝ)
42 cvgratnn.4 . . . . . . . . . . 11 (𝜑𝐴 < 1)
43 cvgratnn.gt0 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝐴)
4423, 43elrpd 9707 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
4544reclt1d 9724 . . . . . . . . . . 11 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
4642, 45mpbid 147 . . . . . . . . . 10 (𝜑 → 1 < (1 / 𝐴))
47 1re 7970 . . . . . . . . . . 11 1 ∈ ℝ
4844rprecred 9722 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℝ)
49 difrp 9706 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5047, 48, 49sylancr 414 . . . . . . . . . 10 (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5146, 50mpbid 147 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
5251rpreccld 9721 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
5352, 44rpdivcld 9728 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
54 fveq2 5527 . . . . . . . . . . 11 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
5554eleq1d 2256 . . . . . . . . . 10 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
56 1nn 8944 . . . . . . . . . . 11 1 ∈ ℕ
5756a1i 9 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
5855, 15, 57rspcdva 2858 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ ℂ)
5958abscld 11204 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
6058absge0d 11207 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
6159, 60ge0p1rpd 9741 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
6253, 61rpmulcld 9727 . . . . . 6 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
6362rpred 9710 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
6463, 5nndivred 8983 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
65 1red 7986 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6665, 23resubcld 8352 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℝ)
6723, 65posdifd 8503 . . . . . . . 8 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
6842, 67mpbid 147 . . . . . . 7 (𝜑 → 0 < (1 − 𝐴))
6966, 68elrpd 9707 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ+)
7044, 69rpdivcld 9728 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
7170rpred 9710 . . . 4 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ)
7264, 71remulcld 8002 . . 3 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ)
73 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11548 . . . . 5 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
7574fveq2d 5531 . . . 4 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)))
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11549 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7775, 76eqbrtrd 4037 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7816absge0d 11207 . . . 4 (𝜑 → 0 ≤ (abs‘(𝐹𝑀)))
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11551 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
8044adantr 276 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ+)
8138nn0zd 9387 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
8280, 81rpexpcld 10692 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ+)
8382rpge0d 9714 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖𝑀)))
8422, 39, 83fsumge0 11481 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11550 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8912 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8712, 41, 72, 77, 86lelttrd 8096 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8863recnd 8000 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℂ)
8971recnd 8000 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
905nncnd 8947 . . 3 (𝜑𝑀 ∈ ℂ)
915nnap0d 8979 . . 3 (𝜑𝑀 # 0)
9288, 89, 90, 91div23apd 8799 . 2 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
9387, 92breqtrrd 4043 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158   class class class wbr 4015  cfv 5228  (class class class)co 5888  cc 7823  cr 7824  0cc0 7825  1c1 7826   + caddc 7828   · cmul 7830   < clt 8006  cle 8007  cmin 8142   / cdiv 8643  cn 8933  0cn0 9190  cz 9267  cuz 9542  +crp 9667  ...cfz 10022  seqcseq 10459  cexp 10533  abscabs 11020  Σcsu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-ico 9908  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  cvgratnn  11553
  Copyright terms: Public domain W3C validator