ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate GIF version

Theorem cvgratnnlemrate 11461
Description: Lemma for cvgratnn 11462. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemrate.m (𝜑𝑀 ∈ ℕ)
cvgratnnlemrate.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemrate (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemrate
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9493 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9210 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10400 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnnlemrate.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6 cvgratnnlemrate.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluznn 9530 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
85, 6, 7syl2anc 409 . . . . . 6 (𝜑𝑁 ∈ ℕ)
94, 8ffvelrnd 5616 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ)
104, 5ffvelrnd 5616 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
119, 10subcld 8201 . . . 4 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ)
1211abscld 11113 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ)
13 fveq2 5481 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1413eleq1d 2233 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
153ralrimiva 2537 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1614, 15, 5rspcdva 2831 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
1716abscld 11113 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
185nnzd 9304 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918peano2zd 9308 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
20 eluzelz 9467 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
216, 20syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2219, 21fzfigd 10357 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
23 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2423adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
255nnred 8862 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2625adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
27 peano2re 8026 . . . . . . . . 9 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2826, 27syl 14 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
29 elfzelz 9952 . . . . . . . . . 10 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
3029adantl 275 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
3130zred 9305 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
3226lep1d 8818 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
33 elfzle1 9953 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
3433adantl 275 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
3526, 28, 31, 32, 34letrd 8014 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
36 znn0sub 9248 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3718, 29, 36syl2an 287 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3835, 37mpbid 146 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
3924, 38reexpcld 10595 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
4022, 39fsumrecl 11332 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) ∈ ℝ)
4117, 40remulcld 7921 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) ∈ ℝ)
42 cvgratnn.4 . . . . . . . . . . 11 (𝜑𝐴 < 1)
43 cvgratnn.gt0 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝐴)
4423, 43elrpd 9621 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
4544reclt1d 9638 . . . . . . . . . . 11 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
4642, 45mpbid 146 . . . . . . . . . 10 (𝜑 → 1 < (1 / 𝐴))
47 1re 7890 . . . . . . . . . . 11 1 ∈ ℝ
4844rprecred 9636 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℝ)
49 difrp 9620 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5047, 48, 49sylancr 411 . . . . . . . . . 10 (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5146, 50mpbid 146 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
5251rpreccld 9635 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
5352, 44rpdivcld 9642 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
54 fveq2 5481 . . . . . . . . . . 11 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
5554eleq1d 2233 . . . . . . . . . 10 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
56 1nn 8860 . . . . . . . . . . 11 1 ∈ ℕ
5756a1i 9 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
5855, 15, 57rspcdva 2831 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ ℂ)
5958abscld 11113 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
6058absge0d 11116 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
6159, 60ge0p1rpd 9655 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
6253, 61rpmulcld 9641 . . . . . 6 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
6362rpred 9624 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
6463, 5nndivred 8899 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
65 1red 7906 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6665, 23resubcld 8271 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℝ)
6723, 65posdifd 8422 . . . . . . . 8 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
6842, 67mpbid 146 . . . . . . 7 (𝜑 → 0 < (1 − 𝐴))
6966, 68elrpd 9621 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ+)
7044, 69rpdivcld 9642 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
7170rpred 9624 . . . 4 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ)
7264, 71remulcld 7921 . . 3 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ)
73 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11457 . . . . 5 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
7574fveq2d 5485 . . . 4 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)))
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11458 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7775, 76eqbrtrd 3999 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7816absge0d 11116 . . . 4 (𝜑 → 0 ≤ (abs‘(𝐹𝑀)))
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11460 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
8044adantr 274 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ+)
8138nn0zd 9303 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
8280, 81rpexpcld 10602 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ+)
8382rpge0d 9628 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖𝑀)))
8422, 39, 83fsumge0 11390 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11459 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8828 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8712, 41, 72, 77, 86lelttrd 8015 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8863recnd 7919 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℂ)
8971recnd 7919 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
905nncnd 8863 . . 3 (𝜑𝑀 ∈ ℂ)
915nnap0d 8895 . . 3 (𝜑𝑀 # 0)
9288, 89, 90, 91div23apd 8716 . 2 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
9387, 92breqtrrd 4005 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135   class class class wbr 3977  cfv 5183  (class class class)co 5837  cc 7743  cr 7744  0cc0 7745  1c1 7746   + caddc 7748   · cmul 7750   < clt 7925  cle 7926  cmin 8061   / cdiv 8560  cn 8849  0cn0 9106  cz 9183  cuz 9458  +crp 9581  ...cfz 9936  seqcseq 10371  cexp 10445  abscabs 10929  Σcsu 11284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4092  ax-sep 4095  ax-nul 4103  ax-pow 4148  ax-pr 4182  ax-un 4406  ax-setind 4509  ax-iinf 4560  ax-cnex 7836  ax-resscn 7837  ax-1cn 7838  ax-1re 7839  ax-icn 7840  ax-addcl 7841  ax-addrcl 7842  ax-mulcl 7843  ax-mulrcl 7844  ax-addcom 7845  ax-mulcom 7846  ax-addass 7847  ax-mulass 7848  ax-distr 7849  ax-i2m1 7850  ax-0lt1 7851  ax-1rid 7852  ax-0id 7853  ax-rnegex 7854  ax-precex 7855  ax-cnre 7856  ax-pre-ltirr 7857  ax-pre-ltwlin 7858  ax-pre-lttrn 7859  ax-pre-apti 7860  ax-pre-ltadd 7861  ax-pre-mulgt0 7862  ax-pre-mulext 7863  ax-arch 7864  ax-caucvg 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2724  df-sbc 2948  df-csb 3042  df-dif 3114  df-un 3116  df-in 3118  df-ss 3125  df-nul 3406  df-if 3517  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-int 3820  df-iun 3863  df-br 3978  df-opab 4039  df-mpt 4040  df-tr 4076  df-id 4266  df-po 4269  df-iso 4270  df-iord 4339  df-on 4341  df-ilim 4342  df-suc 4344  df-iom 4563  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611  df-ima 4612  df-iota 5148  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-fv 5191  df-isom 5192  df-riota 5793  df-ov 5840  df-oprab 5841  df-mpo 5842  df-1st 6101  df-2nd 6102  df-recs 6265  df-irdg 6330  df-frec 6351  df-1o 6376  df-oadd 6380  df-er 6493  df-en 6699  df-dom 6700  df-fin 6701  df-pnf 7927  df-mnf 7928  df-xr 7929  df-ltxr 7930  df-le 7931  df-sub 8063  df-neg 8064  df-reap 8465  df-ap 8472  df-div 8561  df-inn 8850  df-2 8908  df-3 8909  df-4 8910  df-n0 9107  df-z 9184  df-uz 9459  df-q 9550  df-rp 9582  df-ico 9822  df-fz 9937  df-fzo 10069  df-seqfrec 10372  df-exp 10446  df-ihash 10679  df-cj 10774  df-re 10775  df-im 10776  df-rsqrt 10930  df-abs 10931  df-clim 11210  df-sumdc 11285
This theorem is referenced by:  cvgratnn  11462
  Copyright terms: Public domain W3C validator