Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate GIF version

Theorem cvgratnnlemrate 11306
 Description: Lemma for cvgratnn 11307. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemrate.m (𝜑𝑀 ∈ ℕ)
cvgratnnlemrate.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemrate (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemrate
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9368 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9088 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10254 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnnlemrate.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6 cvgratnnlemrate.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluznn 9401 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
85, 6, 7syl2anc 408 . . . . . 6 (𝜑𝑁 ∈ ℕ)
94, 8ffvelrnd 5556 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ)
104, 5ffvelrnd 5556 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
119, 10subcld 8080 . . . 4 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ)
1211abscld 10960 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ)
13 fveq2 5421 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1413eleq1d 2208 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
153ralrimiva 2505 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1614, 15, 5rspcdva 2794 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
1716abscld 10960 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
185nnzd 9179 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918peano2zd 9183 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
20 eluzelz 9342 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
216, 20syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2219, 21fzfigd 10211 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
23 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2423adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
255nnred 8740 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2625adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
27 peano2re 7905 . . . . . . . . 9 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2826, 27syl 14 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
29 elfzelz 9813 . . . . . . . . . 10 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
3029adantl 275 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
3130zred 9180 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
3226lep1d 8696 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
33 elfzle1 9814 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
3433adantl 275 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
3526, 28, 31, 32, 34letrd 7893 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
36 znn0sub 9126 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3718, 29, 36syl2an 287 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3835, 37mpbid 146 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
3924, 38reexpcld 10448 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
4022, 39fsumrecl 11177 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) ∈ ℝ)
4117, 40remulcld 7803 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) ∈ ℝ)
42 cvgratnn.4 . . . . . . . . . . 11 (𝜑𝐴 < 1)
43 cvgratnn.gt0 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝐴)
4423, 43elrpd 9488 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
4544reclt1d 9504 . . . . . . . . . . 11 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
4642, 45mpbid 146 . . . . . . . . . 10 (𝜑 → 1 < (1 / 𝐴))
47 1re 7772 . . . . . . . . . . 11 1 ∈ ℝ
4844rprecred 9502 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℝ)
49 difrp 9487 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5047, 48, 49sylancr 410 . . . . . . . . . 10 (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5146, 50mpbid 146 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
5251rpreccld 9501 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
5352, 44rpdivcld 9508 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
54 fveq2 5421 . . . . . . . . . . 11 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
5554eleq1d 2208 . . . . . . . . . 10 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
56 1nn 8738 . . . . . . . . . . 11 1 ∈ ℕ
5756a1i 9 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
5855, 15, 57rspcdva 2794 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ ℂ)
5958abscld 10960 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
6058absge0d 10963 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
6159, 60ge0p1rpd 9521 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
6253, 61rpmulcld 9507 . . . . . 6 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
6362rpred 9490 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
6463, 5nndivred 8777 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
65 1red 7788 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6665, 23resubcld 8150 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℝ)
6723, 65posdifd 8301 . . . . . . . 8 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
6842, 67mpbid 146 . . . . . . 7 (𝜑 → 0 < (1 − 𝐴))
6966, 68elrpd 9488 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ+)
7044, 69rpdivcld 9508 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
7170rpred 9490 . . . 4 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ)
7264, 71remulcld 7803 . . 3 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ)
73 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11302 . . . . 5 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
7574fveq2d 5425 . . . 4 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)))
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11303 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7775, 76eqbrtrd 3950 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7816absge0d 10963 . . . 4 (𝜑 → 0 ≤ (abs‘(𝐹𝑀)))
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11305 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
8044adantr 274 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ+)
8138nn0zd 9178 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
8280, 81rpexpcld 10455 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ+)
8382rpge0d 9494 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖𝑀)))
8422, 39, 83fsumge0 11235 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11304 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8706 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8712, 41, 72, 77, 86lelttrd 7894 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8863recnd 7801 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℂ)
8971recnd 7801 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
905nncnd 8741 . . 3 (𝜑𝑀 ∈ ℂ)
915nnap0d 8773 . . 3 (𝜑𝑀 # 0)
9288, 89, 90, 91div23apd 8595 . 2 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
9387, 92breqtrrd 3956 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7625  ℝcr 7626  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632   < clt 7807   ≤ cle 7808   − cmin 7940   / cdiv 8439  ℕcn 8727  ℕ0cn0 8984  ℤcz 9061  ℤ≥cuz 9333  ℝ+crp 9448  ...cfz 9797  seqcseq 10225  ↑cexp 10299  abscabs 10776  Σcsu 11129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-ico 9684  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-ihash 10529  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130 This theorem is referenced by:  cvgratnn  11307
 Copyright terms: Public domain W3C validator