ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate GIF version

Theorem cvgratnnlemrate 11522
Description: Lemma for cvgratnn 11523. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemrate.m (𝜑𝑀 ∈ ℕ)
cvgratnnlemrate.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemrate (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemrate
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9552 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9269 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10460 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnnlemrate.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6 cvgratnnlemrate.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluznn 9589 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
85, 6, 7syl2anc 411 . . . . . 6 (𝜑𝑁 ∈ ℕ)
94, 8ffvelcdmd 5648 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ)
104, 5ffvelcdmd 5648 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
119, 10subcld 8258 . . . 4 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ)
1211abscld 11174 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ)
13 fveq2 5511 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1413eleq1d 2246 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
153ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1614, 15, 5rspcdva 2846 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
1716abscld 11174 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
185nnzd 9363 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918peano2zd 9367 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
20 eluzelz 9526 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
216, 20syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2219, 21fzfigd 10417 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
23 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2423adantr 276 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
255nnred 8921 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2625adantr 276 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
27 peano2re 8083 . . . . . . . . 9 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2826, 27syl 14 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
29 elfzelz 10011 . . . . . . . . . 10 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
3029adantl 277 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
3130zred 9364 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
3226lep1d 8877 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
33 elfzle1 10013 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
3433adantl 277 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
3526, 28, 31, 32, 34letrd 8071 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
36 znn0sub 9307 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3718, 29, 36syl2an 289 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3835, 37mpbid 147 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
3924, 38reexpcld 10656 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
4022, 39fsumrecl 11393 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) ∈ ℝ)
4117, 40remulcld 7978 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) ∈ ℝ)
42 cvgratnn.4 . . . . . . . . . . 11 (𝜑𝐴 < 1)
43 cvgratnn.gt0 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝐴)
4423, 43elrpd 9680 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
4544reclt1d 9697 . . . . . . . . . . 11 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
4642, 45mpbid 147 . . . . . . . . . 10 (𝜑 → 1 < (1 / 𝐴))
47 1re 7947 . . . . . . . . . . 11 1 ∈ ℝ
4844rprecred 9695 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℝ)
49 difrp 9679 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5047, 48, 49sylancr 414 . . . . . . . . . 10 (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5146, 50mpbid 147 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
5251rpreccld 9694 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
5352, 44rpdivcld 9701 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
54 fveq2 5511 . . . . . . . . . . 11 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
5554eleq1d 2246 . . . . . . . . . 10 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
56 1nn 8919 . . . . . . . . . . 11 1 ∈ ℕ
5756a1i 9 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
5855, 15, 57rspcdva 2846 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ ℂ)
5958abscld 11174 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
6058absge0d 11177 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
6159, 60ge0p1rpd 9714 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
6253, 61rpmulcld 9700 . . . . . 6 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
6362rpred 9683 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
6463, 5nndivred 8958 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
65 1red 7963 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6665, 23resubcld 8328 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℝ)
6723, 65posdifd 8479 . . . . . . . 8 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
6842, 67mpbid 147 . . . . . . 7 (𝜑 → 0 < (1 − 𝐴))
6966, 68elrpd 9680 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ+)
7044, 69rpdivcld 9701 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
7170rpred 9683 . . . 4 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ)
7264, 71remulcld 7978 . . 3 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ)
73 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11518 . . . . 5 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
7574fveq2d 5515 . . . 4 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)))
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11519 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7775, 76eqbrtrd 4022 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7816absge0d 11177 . . . 4 (𝜑 → 0 ≤ (abs‘(𝐹𝑀)))
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11521 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
8044adantr 276 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ+)
8138nn0zd 9362 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
8280, 81rpexpcld 10663 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ+)
8382rpge0d 9687 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖𝑀)))
8422, 39, 83fsumge0 11451 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11520 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8887 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8712, 41, 72, 77, 86lelttrd 8072 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8863recnd 7976 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℂ)
8971recnd 7976 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
905nncnd 8922 . . 3 (𝜑𝑀 ∈ ℂ)
915nnap0d 8954 . . 3 (𝜑𝑀 # 0)
9288, 89, 90, 91div23apd 8774 . 2 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
9387, 92breqtrrd 4028 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cuz 9517  +crp 9640  ...cfz 9995  seqcseq 10431  cexp 10505  abscabs 10990  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  cvgratnn  11523
  Copyright terms: Public domain W3C validator