| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 9654 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 9370 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | cvgratnn.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 4 | 1, 2, 3 | serf 10592 |
. . . . . 6
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
| 5 | | cvgratnnlemrate.m |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 6 | | cvgratnnlemrate.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 7 | | eluznn 9691 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℕ) |
| 8 | 5, 6, 7 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | 4, 8 | ffvelcdmd 5701 |
. . . . 5
⊢ (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ) |
| 10 | 4, 5 | ffvelcdmd 5701 |
. . . . 5
⊢ (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ) |
| 11 | 9, 10 | subcld 8354 |
. . . 4
⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ) |
| 12 | 11 | abscld 11363 |
. . 3
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ) |
| 13 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 14 | 13 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
| 15 | 3 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 16 | 14, 15, 5 | rspcdva 2873 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 17 | 16 | abscld 11363 |
. . . 4
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
| 18 | 5 | nnzd 9464 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 19 | 18 | peano2zd 9468 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 20 | | eluzelz 9627 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 21 | 6, 20 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 22 | 19, 21 | fzfigd 10540 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
| 23 | | cvgratnn.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 24 | 23 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ) |
| 25 | 5 | nnred 9020 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 26 | 25 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ) |
| 27 | | peano2re 8179 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
| 28 | 26, 27 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ) |
| 29 | | elfzelz 10117 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ) |
| 30 | 29 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ) |
| 31 | 30 | zred 9465 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ) |
| 32 | 26 | lep1d 8975 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1)) |
| 33 | | elfzle1 10119 |
. . . . . . . . 9
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖) |
| 34 | 33 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖) |
| 35 | 26, 28, 31, 32, 34 | letrd 8167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ 𝑖) |
| 36 | | znn0sub 9408 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀 ≤ 𝑖 ↔ (𝑖 − 𝑀) ∈
ℕ0)) |
| 37 | 18, 29, 36 | syl2an 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 ≤ 𝑖 ↔ (𝑖 − 𝑀) ∈
ℕ0)) |
| 38 | 35, 37 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈
ℕ0) |
| 39 | 24, 38 | reexpcld 10799 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈ ℝ) |
| 40 | 22, 39 | fsumrecl 11583 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) ∈ ℝ) |
| 41 | 17, 40 | remulcld 8074 |
. . 3
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) ∈ ℝ) |
| 42 | | cvgratnn.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 < 1) |
| 43 | | cvgratnn.gt0 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < 𝐴) |
| 44 | 23, 43 | elrpd 9785 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
| 45 | 44 | reclt1d 9802 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴))) |
| 46 | 42, 45 | mpbid 147 |
. . . . . . . . . 10
⊢ (𝜑 → 1 < (1 / 𝐴)) |
| 47 | | 1re 8042 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 48 | 44 | rprecred 9800 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 49 | | difrp 9784 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈
ℝ+)) |
| 50 | 47, 48, 49 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈
ℝ+)) |
| 51 | 46, 50 | mpbid 147 |
. . . . . . . . 9
⊢ (𝜑 → ((1 / 𝐴) − 1) ∈
ℝ+) |
| 52 | 51 | rpreccld 9799 |
. . . . . . . 8
⊢ (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈
ℝ+) |
| 53 | 52, 44 | rpdivcld 9806 |
. . . . . . 7
⊢ (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈
ℝ+) |
| 54 | | fveq2 5561 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → (𝐹‘𝑘) = (𝐹‘1)) |
| 55 | 54 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ)) |
| 56 | | 1nn 9018 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 57 | 56 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℕ) |
| 58 | 55, 15, 57 | rspcdva 2873 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) ∈ ℂ) |
| 59 | 58 | abscld 11363 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(𝐹‘1)) ∈
ℝ) |
| 60 | 58 | absge0d 11366 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (abs‘(𝐹‘1))) |
| 61 | 59, 60 | ge0p1rpd 9819 |
. . . . . . 7
⊢ (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈
ℝ+) |
| 62 | 53, 61 | rpmulcld 9805 |
. . . . . 6
⊢ (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈
ℝ+) |
| 63 | 62 | rpred 9788 |
. . . . 5
⊢ (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈
ℝ) |
| 64 | 63, 5 | nndivred 9057 |
. . . 4
⊢ (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈
ℝ) |
| 65 | | 1red 8058 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 66 | 65, 23 | resubcld 8424 |
. . . . . . 7
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ) |
| 67 | 23, 65 | posdifd 8576 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) |
| 68 | 42, 67 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → 0 < (1 − 𝐴)) |
| 69 | 66, 68 | elrpd 9785 |
. . . . . 6
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ+) |
| 70 | 44, 69 | rpdivcld 9806 |
. . . . 5
⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈
ℝ+) |
| 71 | 70 | rpred 9788 |
. . . 4
⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ) |
| 72 | 64, 71 | remulcld 8074 |
. . 3
⊢ (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ) |
| 73 | | cvgratnn.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 74 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemseq 11708 |
. . . . 5
⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |
| 75 | 74 | fveq2d 5565 |
. . . 4
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖))) |
| 76 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemabsle 11709 |
. . . 4
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |
| 77 | 75, 76 | eqbrtrd 4056 |
. . 3
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |
| 78 | 16 | absge0d 11366 |
. . . 4
⊢ (𝜑 → 0 ≤ (abs‘(𝐹‘𝑀))) |
| 79 | 23, 42, 43, 3, 73, 5 | cvgratnnlemfm 11711 |
. . . 4
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀)) |
| 80 | 44 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈
ℝ+) |
| 81 | 38 | nn0zd 9463 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈ ℤ) |
| 82 | 80, 81 | rpexpcld 10806 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈
ℝ+) |
| 83 | 82 | rpge0d 9792 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖 − 𝑀))) |
| 84 | 22, 39, 83 | fsumge0 11641 |
. . . 4
⊢ (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) |
| 85 | 23, 42, 43, 3, 73, 5, 6 | cvgratnnlemsumlt 11710 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) < (𝐴 / (1 − 𝐴))) |
| 86 | 17, 64, 40, 71, 78, 79, 84, 85 | ltmul12ad 8985 |
. . 3
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴)))) |
| 87 | 12, 41, 72, 77, 86 | lelttrd 8168 |
. 2
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴)))) |
| 88 | 63 | recnd 8072 |
. . 3
⊢ (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈
ℂ) |
| 89 | 71 | recnd 8072 |
. . 3
⊢ (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ) |
| 90 | 5 | nncnd 9021 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 91 | 5 | nnap0d 9053 |
. . 3
⊢ (𝜑 → 𝑀 # 0) |
| 92 | 88, 89, 90, 91 | div23apd 8872 |
. 2
⊢ (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴)))) |
| 93 | 87, 92 | breqtrrd 4062 |
1
⊢ (𝜑 → (abs‘((seq1( + ,
𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀)) |