ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemrate GIF version

Theorem cvgratnnlemrate 11695
Description: Lemma for cvgratnn 11696. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnnlemrate.m (𝜑𝑀 ∈ ℕ)
cvgratnnlemrate.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemrate (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀

Proof of Theorem cvgratnnlemrate
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9637 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9353 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10575 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
5 cvgratnnlemrate.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
6 cvgratnnlemrate.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
7 eluznn 9674 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
85, 6, 7syl2anc 411 . . . . . 6 (𝜑𝑁 ∈ ℕ)
94, 8ffvelcdmd 5698 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑁) ∈ ℂ)
104, 5ffvelcdmd 5698 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
119, 10subcld 8337 . . . 4 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) ∈ ℂ)
1211abscld 11346 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ∈ ℝ)
13 fveq2 5558 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
1413eleq1d 2265 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
153ralrimiva 2570 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1614, 15, 5rspcdva 2873 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
1716abscld 11346 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
185nnzd 9447 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1918peano2zd 9451 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
20 eluzelz 9610 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
216, 20syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2219, 21fzfigd 10523 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
23 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2423adantr 276 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
255nnred 9003 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
2625adantr 276 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
27 peano2re 8162 . . . . . . . . 9 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2826, 27syl 14 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
29 elfzelz 10100 . . . . . . . . . 10 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
3029adantl 277 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
3130zred 9448 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
3226lep1d 8958 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
33 elfzle1 10102 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
3433adantl 277 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
3526, 28, 31, 32, 34letrd 8150 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
36 znn0sub 9391 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3718, 29, 36syl2an 289 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀𝑖 ↔ (𝑖𝑀) ∈ ℕ0))
3835, 37mpbid 147 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
3924, 38reexpcld 10782 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
4022, 39fsumrecl 11566 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) ∈ ℝ)
4117, 40remulcld 8057 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) ∈ ℝ)
42 cvgratnn.4 . . . . . . . . . . 11 (𝜑𝐴 < 1)
43 cvgratnn.gt0 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝐴)
4423, 43elrpd 9768 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
4544reclt1d 9785 . . . . . . . . . . 11 (𝜑 → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
4642, 45mpbid 147 . . . . . . . . . 10 (𝜑 → 1 < (1 / 𝐴))
47 1re 8025 . . . . . . . . . . 11 1 ∈ ℝ
4844rprecred 9783 . . . . . . . . . . 11 (𝜑 → (1 / 𝐴) ∈ ℝ)
49 difrp 9767 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5047, 48, 49sylancr 414 . . . . . . . . . 10 (𝜑 → (1 < (1 / 𝐴) ↔ ((1 / 𝐴) − 1) ∈ ℝ+))
5146, 50mpbid 147 . . . . . . . . 9 (𝜑 → ((1 / 𝐴) − 1) ∈ ℝ+)
5251rpreccld 9782 . . . . . . . 8 (𝜑 → (1 / ((1 / 𝐴) − 1)) ∈ ℝ+)
5352, 44rpdivcld 9789 . . . . . . 7 (𝜑 → ((1 / ((1 / 𝐴) − 1)) / 𝐴) ∈ ℝ+)
54 fveq2 5558 . . . . . . . . . . 11 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
5554eleq1d 2265 . . . . . . . . . 10 (𝑘 = 1 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘1) ∈ ℂ))
56 1nn 9001 . . . . . . . . . . 11 1 ∈ ℕ
5756a1i 9 . . . . . . . . . 10 (𝜑 → 1 ∈ ℕ)
5855, 15, 57rspcdva 2873 . . . . . . . . 9 (𝜑 → (𝐹‘1) ∈ ℂ)
5958abscld 11346 . . . . . . . 8 (𝜑 → (abs‘(𝐹‘1)) ∈ ℝ)
6058absge0d 11349 . . . . . . . 8 (𝜑 → 0 ≤ (abs‘(𝐹‘1)))
6159, 60ge0p1rpd 9802 . . . . . . 7 (𝜑 → ((abs‘(𝐹‘1)) + 1) ∈ ℝ+)
6253, 61rpmulcld 9788 . . . . . 6 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ+)
6362rpred 9771 . . . . 5 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℝ)
6463, 5nndivred 9040 . . . 4 (𝜑 → ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) ∈ ℝ)
65 1red 8041 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
6665, 23resubcld 8407 . . . . . . 7 (𝜑 → (1 − 𝐴) ∈ ℝ)
6723, 65posdifd 8559 . . . . . . . 8 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
6842, 67mpbid 147 . . . . . . 7 (𝜑 → 0 < (1 − 𝐴))
6966, 68elrpd 9768 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ+)
7044, 69rpdivcld 9789 . . . . 5 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ+)
7170rpred 9771 . . . 4 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℝ)
7264, 71remulcld 8057 . . 3 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))) ∈ ℝ)
73 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
7423, 42, 43, 3, 73, 5, 6cvgratnnlemseq 11691 . . . . 5 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
7574fveq2d 5562 . . . 4 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) = (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)))
7623, 42, 43, 3, 73, 5, 6cvgratnnlemabsle 11692 . . . 4 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7775, 76eqbrtrd 4055 . . 3 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
7816absge0d 11349 . . . 4 (𝜑 → 0 ≤ (abs‘(𝐹𝑀)))
7923, 42, 43, 3, 73, 5cvgratnnlemfm 11694 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) < ((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀))
8044adantr 276 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ+)
8138nn0zd 9446 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
8280, 81rpexpcld 10789 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ+)
8382rpge0d 9775 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐴↑(𝑖𝑀)))
8422, 39, 83fsumge0 11624 . . . 4 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
8523, 42, 43, 3, 73, 5, 6cvgratnnlemsumlt 11693 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
8617, 64, 40, 71, 78, 79, 84, 85ltmul12ad 8968 . . 3 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8712, 41, 72, 77, 86lelttrd 8151 . 2 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
8863recnd 8055 . . 3 (𝜑 → (((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) ∈ ℂ)
8971recnd 8055 . . 3 (𝜑 → (𝐴 / (1 − 𝐴)) ∈ ℂ)
905nncnd 9004 . . 3 (𝜑𝑀 ∈ ℂ)
915nnap0d 9036 . . 3 (𝜑𝑀 # 0)
9288, 89, 90, 91div23apd 8855 . 2 (𝜑 → (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀) = (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) / 𝑀) · (𝐴 / (1 − 𝐴))))
9387, 92breqtrrd 4061 1 (𝜑 → (abs‘((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) < (((((1 / ((1 / 𝐴) − 1)) / 𝐴) · ((abs‘(𝐹‘1)) + 1)) · (𝐴 / (1 − 𝐴))) / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cuz 9601  +crp 9728  ...cfz 10083  seqcseq 10539  cexp 10630  abscabs 11162  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  cvgratnn  11696
  Copyright terms: Public domain W3C validator