ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lep1 GIF version

Theorem lep1 8761
Description: A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
lep1 (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))

Proof of Theorem lep1
StepHypRef Expression
1 ltp1 8760 . 2 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
2 peano2re 8055 . . 3 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
3 ltle 8007 . . 3 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ) → (𝐴 < (𝐴 + 1) → 𝐴 ≤ (𝐴 + 1)))
42, 3mpdan 419 . 2 (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) → 𝐴 ≤ (𝐴 + 1)))
51, 4mpd 13 1 (𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141   class class class wbr 3989  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777   < clt 7954  cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-iota 5160  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  p1le  8765  lep1d  8847  peano2uz2  9319
  Copyright terms: Public domain W3C validator